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Unsupervised pre-training

• Why deep? Brains, ideas, efficiency, statistical strengths.

• < 2006, fully-connected deep networks not popular.

• > 2006, Hinton et al.: use unsupervised pre-training with 
Restricted Boltzman Machines for initialization.

• It works: vision, NLP, speech, etc.

• Crucial ingredient is unsupervised initialization: RBMs,  auto-
encoders, even kernel PCAs (Cho & Saul @ NIPS ’09).

• Widely applied, but well-understood?
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Why does it work so well? 
• Plan: 

i. propose explanatory hypotheses

ii. observe the effects of pre-training 

iii. infer its role & level of agreement with our hypotheses.

• Regularization hypothesis: 

• Unsupervised component constrains the network to model P(x)

• P(x) representations good for P(y|x). 

• Optimization hypothesis:

• Unsupervised initialization near better local minimum of P(y|x)

• Reach lower local minimum not achievable by random initialization.
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Errors over time

• Pre-training = better 
generalization for the same 
training error
• Worse training error, 
even at the end
• A regularization 
interpretation fits well.
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Varying the layer size

• Pre-training + small layer size = worse than 
randomly initialized nets
• Additional capacity argument
• Supports a regularization explanation.
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Trajectories in function space

t-SNE (van der Maaten & Hinton ’08) Isomap (Tenenbaum, de Silva & Langford ‘00)

Projecting network outputs (number of test examples x number of top 
layer units) into 2D:

Many apparent local minima Disjoint regions of space
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The role of pre-training

• Pre-training places the networks in a region of the parameter 
space that is very different from the one given by random 
initialization.

• Effect of a unique kind of regularizer: one that restricts and 
influences positively the starting point of supervised 
optimization.

• Will the pre-training effect disappear in a large-scale (online) 
learning scenario?
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The online learning scenario

• 10 million examples; (smoothed) 
online error.

• Pre-training advantage does not 
vanish as dataset size increases.

• Starting point of non-convex 
optimization clearly matters, 
even in a scenario with essentially 
unbounded training data.

Surprising as it shows that pre-training does not 
follow the standard interpretation of a regularizer. 
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Effect of example ordering

• Online, stochastic, non-convex.

• What is the effect of examples seen 
at different points during training on 
the outcome?

• Vary only the 1st one million 
examples, only the 2nd million, etc. 

• Measure the variance of the 
output at the end of training 
on a fixed test set:

• Early examples influence more

• Pre-training = variance reduction

Start of supervised training
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Dynamics of unsupervised 
pre-training initialization

• As weights become larger, they get 
trapped in a basin of attraction 
(“quadrant” does not change)

• Initial updates have a crucial influence 
(“critical period”), explain more of the 
variance

• Unsupervised pre-training initializes in 
basin of attraction with good 
generalization properties
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Discussion & take-home

• Early results had pointed towards a regularization hypothesis; 
we suggest a more nuanced interpretation.

• Explored the online setting and found surprising results: pre-
training effect does not vanish. 

• Pre-training: variance reduction technique.

• Positive effect as long as modelling P(x) is useful for P(y|x).

• Influence of early examples could be troublesome.

• Future: understand other semi-supervised deep approaches.

• More results & discussion in our upcoming JMLR paper!
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Thank you!
Questions? Comments?
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