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Abstract

Deep architectures have demonstrated state-of-the-ddrpence in a variety of
settings, especially with vision datasets. Deep learniggridhms are based on learn-
ing several levels ofepresentatiorof the input. Beyond test-set performance, there
is a need fogualitative comparisons of the solutions learned by various deep archi-
tectures, focused on those learned representations. Cthe gals of our research
is to improve tools for finding good qualitative interprédats of high level features
learned by such models. We also seek to gain insight intortheiances learned by
deep networks. To this end, we contrast and compare seeetatitjues for finding
such interpretations. We applied our techniques on Stabkerbising Auto-Encoders
and Deep Belief Networks, trained on several vision dasasie show that consistent
filter-like interpretation is possible and simple to accdistpat the unit level. The tools
developed make it possible to analyze deep models in moith ded accomplish the
tracing ofinvariance manifold$or each of the hidden units. We hope that such tech-
nigues will allow researchers in deep architectures to rgtded more of how and why
deep architectures work.

1 Introduction

Until 2006, it was not known how to efficiently learn deep hiehies of features with a
densely-connected neural network of many layers. The theakgh, by Hinton et al.
(2006a), came with the realization that unsupervised nsoslath as Restricted Boltz-
mann Machines (RBMs) can be used to initialize the networ& negion of the pa-
rameter space that makes it easier to subsequently find gmihanof the supervised
objective, i.e., which give good generalization error. Tineedy, layer-wise unsuper-
vised initialization of a network can also be carried out Bing auto-associators and



related models (Bengio et al., 2007; Ranzato et al., 200&keRtly, there has been a
surge in research on training deep architectures: Ben@i@9(2gives a comprehensive
review.

There exists a flurry of ideas on how pre-training should beeghow to better train
deep models and how to, in general, learn better hierarcteépaesentations of data.
There has also been some progress in better understandiedfeiot of unsupervised
pre-training and its role as a regularizer (Erhan et al. 020And while quantitative
analyses and comparisons of various strategies, modeleemaiques exist, and visu-
alizations of the first layer representations are commohatiterature, one area where
more work needs to be done is thealitativeanalysis of representations learned be-
yond the first level. Qualitative analysis would bring usighss into the models used,
and would allow us to compare them beyond merely measuririgrpgance on a held-
out dataset.

We want to understand what the models have learned: whatrésabf the data
models have captured and which ones they have not. Answénattquestion would
help tackle issues that are potentially difficult to addresth a purely quantitative
approach. For instance, what is the difference betweenepeesentations learned
by a Deep Belief Network (DBN) and a Stacked Denoising Autedtler (SDAE),
when both models perform similarly on the same test set? Wliadvalso be helpful in
providing evidence to support the hypothesis that deepesgptations are capturing
and disentangling interesting features of the data.

To better understand what models learn, we set as an aim (iheratton of ways
to visualize what a unit activates in arbitrary layer of a deep network. The goal is to
have this visualization in th@put spacdof images), while remaining computationally
efficient, and to make it as general as possible (in the sdnséaing applicable to a
large class of neural-network-like models).

For a first layer unit, given its quasi-linear response (igrgpthe sigmoidal nonlin-
earity), a typical visualization is simply showing in theirt space (e.g. as an image)
the input weights of the unit, also called the filters or “netoee fields”. This is par-
ticularly convenient when the inputs are images or wave$pnvhich can be visually
interpreted by humans. Often, these filters take the shagé&aie detectors, when
trained on digit data, or edge detectors (Gabor filters) wih&ned on natural image
patches (Hinton et al., 2006a,b; Osindero and Hinton, 2D8R)chelle et al., 2009).

For higher-level (deeper) layers, one could approach thiel@m from a few differ-
ent angles. One approach is to devise sampling techniqoesngtance, Deep Belief
Nets by Hinton et al. (2006a) have an associated generateegure, and one could
potentially use such a procedure to gain insight into whaindividual hidden unit
represents; we introduce such an approach in this work. thatenethods that rely on
sampling will likely produce output similar to examplesrirdghe training distribution
and one might need to further process the samples in ordegéita picture of what
the unit represents. A second approach, introduced in #perp is inspired by the
idea of maximizing the response of a given unit. One of theegrgental findings of
this investigation is quite surprising: despite its liniivas (local minima), this method
was able to find coherent filter-like representations fopéeeinits. A third approach,
by Lee et al. (2008), produces a filter-like representat@mrdeeper units from a lin-
ear combinations of lower-level filters. Our results appaarsistent across various



datasets and techniques.

In this paper, compare and contrast these techniquesafieiy on several image
datasets, and we also explore connections between all of. tliven if we obtain a
“filter”-like representation of a unit from a deep layer, ab not tell us the whole
picture, because of the nonlinear relationship betweemghg and the unit response.
One way of getting more insight into such a nonlinear unityigdsting its invariance
against a specific set of variations in the input, e.g. rotstiGoodfellow et al., 2009).
We argue in this paper that it is useful to seedetof invariances, omvariance man-
ifolds for each of these units. In particular, we explore a genegthod that is not
tied to a specific list of invariances. Such an invariancdyaigcould be a way to gain
more insight into what the units of those layers capture. Atidoution of this paper is
the introduction of a few general tools that make the feaametinvariance analysis of
deeper layers possible.

2 Previous work

We briefly go over previous attempts at solving the visuéilimaand invariance prob-
lem, in contexts similar to ours.

2.1 Linear combination of previous units

Lee et al. (2008) showed one way of visualizing the activapattern of units in the
second hidden layer of a Deep Belief Network (Hinton et @00&a). They made the
assumption that a unit can be characterized by the filtetsegbtevious layer to which
it is most strongly connectédByY taking a weighted linear combination of the previous
layer filters—where the weight of the filters is its weight te timit considered—they
show that a Deep Belief Network, trained on natural imagéétend to learn “corner
detectors” at the second layer. Lee et al. (2009) used anaedeversion of this method
for visualizing units of the third layer: by simply weighirige “filters” found at the
second layer by their connections to the third layer, andsimg again the largest
weights.

Such a technique is simple and efficient. One disadvantatigist is not clear
how to automatically choose the appropriate number of $ilterkeep at each layer.
Moreover, by selecting only the very few most strongly carted filters from the first
layer, one can potentially get a misleading picture whemeth& not a small group
of large weights but rather many smaller and similar-magl@atweights into a unit.
Finally, this method also bypasses the nonlinearities eetwayers, which may be an
important part of the model. One motivation for this papeioisalidate whether the
patterns obtained by Lee et al. (2008) are similar to thos&déd by the other methods
explored here.

1i.e. whose weight to the upper unit is large in magnitude



2.2 Output unit sampling

Consider a Deep Belief Network with several layers. A typgmenario is where the
top layer is an RBM that sees as its visible input a concaitemaf the representation
produced by lower levels and a one-hot vector indicatingctass label. In that case,
one can “clamp” the label vector to a particular configuratimd sample from a par-
ticular class distributiom(x|class = k). Such a procedure, first described by Hinton
et al. (2006a), makes it possible to “visualize” output sydts distributions in the input
space. As described in section 4.1, such a procedure candredexr to an arbitrary
unit in the network.

It is sometimes difficult to obtain samples that cover wedl thodes of a Boltz-
mann Machine or RBM distribution, and these sampling-bassahlizations cannot
be applied to other deep architectures such as those basma@encoders (Bengio
et al., 2007; Ranzato et al., 2007; Larochelle et al., 20@riZato et al., 2008; Vincent
et al., 2008) or on semi-supervised learning of similapitgserving embeddings at
each level (Weston et al., 2008). Moreover, sampling predadlistributionfor each
unit: figuring out relevant statistics of that distributi@ag., the modes) is potentially
not straightforward.

2.3 Optimal stimulus analysis for quadratic forms

Berkes and Wiskott (2006) start with an idea, inspired byroghysiological experi-
ments, of computing the optimal excitatory (and inhibijastimulus, in the for quadratic
functions of the input, which are learned using Slow Feafinalysis (SFA). The lim-
itation to quadratic forms of the input makes it possible ta fihe optimal stimulus,
i.e. the one maximizing the activation, relatively easily.

Berkes and Wiskott (2006) also consider an invariance aisadf the optimal stim-
ulus, whereby one finds transformations of the input to whiwh quadratic form is
most insensitive. This method of finding invariance is usimg geodetic path, mean-
ing the path along a sphere (norm constraint, in this caskichnvhas the smallest
“acceleration? as possible.

These ideas are the closest in spirit to the work that wednize in this paper,
related to maximizing the response of a given unit. The kéferdinces, on which we
elaborate in section 5, are that we consider general nalifumctions of the input
(and not just quadratic forms) and our invariance analyss imore direct and more
non-local application of the idea that the directions ofii@nce should be the ones in
which the function value (activation) drops least for suehyal nonlinear functions.

3 The models

For our analysis, we shall consider two deep architectuse®presentatives of two
families of models encountered in the deep learning liteeatThe first model is a Deep
Belief Net (DBN) (Hinton et al., 2006a), obtained by traigiand stacking three layers
of Restricted Boltzmann Machines (RBM) in a greedy manndris Theans that we

2of the considered function, in this case the activation fionc



trained an RBM with Contrastive Divergence (Hinton, 2002¢, fixed the parameters
of this RBM, and then trained another RBM to model the hiddsel representations
of the first level RBM. This process can be repeated to yieldepdarchitecture that
is an unsupervised model of the training distribution, aegative model of the data
from which one can easily obtain samples from a trained mo&&8Ns have been
described numerous times in the literature, please refBetwio (2009) and Hinton
et al. (2006a) for further details.

The second model, introduced by Vincent et al. (2008), isthealled Stacked De-
noising Auto-Encoder (SDAE). It borrows the greedy priteifrom DBNSs, but uses
denoising auto-encoders as a building block for unsupedvinodelling. An auto-
encoder learns an encodef) and a decodey(-) whose composition approaches the
identity for examples in the training set, i.e(h(x)) ~ x for x in the training set. The
denoising auto-encodes a stochastic variant of the ordinary auto-encoder, wkdch
explicitly trained to denoise a corrupted version of itsuhplt has been shown on an
array of datasets to perform significantly better than @djirauto-encoders and sim-
ilarly or better than RBMs when stacked into a deep supesivésehitecture (Vincent
et al., 2008).

We now summarize the training algorithm of the Stacked D&ingiAuto-Encoders.
More details are given by Vincent et al. (2008). Each dengisiuto-encoder operates
on its inputsx, either the raw inputs or the outputs of the previous layehne Te-
noising auto-encoder is trained to reconstsuftom a stochastically corrupted (noisy)
transformation of it. The representation learned by eacioideng auto-encoder is the
“code vector'h(x). In our experimentd(x) = sigmoid(b + Wx) is an ordinary
neural network layer, with hidden unit biasesweight matrixi¥, andsigmoid(a) =
1/(1 + exp(—a)) (applied element-wise on a vectoy. Let C(x) represent a stochas-
tic corruption ofx. As done by Vincent et al. (2008), we randomly §&tx) = x;
or 0. A fixed-size random subset ®fis selected for zeroing. We have also consid-
ered a salt and pepper noise, where we select a random sfilaséxed size and set
C;(x) = Bernoulli(0.5). The “reconstruction” is obtained from the noisy input with
% = sigmoid(c + WTh(C(x))), using biaseg and the transpose of the feed-forward
weightsWW. When training denoising auto-encoders on images, bothathienputa;
and its reconstruction; for a particular pixel can be interpreted as a Bernoulli prob-
ability for that pixel: the probability of painting the pikas black at that location. We
denote byKL(x||x) = ), KL(z;||2;) the sum of component-wise KL divergences be-
tween the Bernoulli probability distributions associavgth each element of and its
reconstruction probabilitie®: KL(x||x) = — ). (z;log&; + (1 — x;) log (1 — Z;)).
The Bernoulli model only makes sense when the input comgsramd their recon-
struction are irj0, 1]; another option is to use a Gaussian model, which correspiond
a Mean Squared Error (MSE) criterion.

For each unlabelled exampie a stochastic gradient estimator is then obtained by
computingdKL(x||x)/06 for 6 = (b,c,W). The gradient is stochastic because of
sampling the examplg and because of the stochastic corrupt{fx). Stochastic
gradient descerst — 6 — ¢ - 9KL(x||%x) /00 is then performed with learning ratefor
a fixed number of pre-training iterations.



4 How to obtain filter-like representations for deep units

We shall start our analysis by introducing the tools to abefilter-like representation
for units belonging to a deep layer.

4.1 Sampling from a unit of a Deep Belief Network

Consider a Deep Belief Network withlayers, as described in section 3. In particu-
lar, layersj — 1 andj form an RBM from which we can sample using block Gibbs
sampling, which successively samples frpfh;_; |h;) andp(h,|h;_+), denoting by
h; the binary vector of units from layer. Along this Markov chain, we propose to
“clamp” unit i;;, and only this unit, td. We can then sample inpugtsby performing
ancestral top-down sampling in the directed belief netwgmiag from layer; — 1 to
the input, in the DBN; as mentioned in section 2.2, this pdoce is similar to experi-
ments done by Hinton et al. (2006a) for output units. Thiglpoes a distribution that
we shall denote by; (x|h;; = 1) whereh,; is the unit that is clamped, ang denotes
the depths DBN containing only the firsj layers.

In essence, with this method, we use the distributigix|h,;; = 1) to characterize
hi;. We can characterize the unit by samples from this disiobutr summarize the
information by computing the expectati@|x|h,;; = 1]. This method has, essentially,
no hyperparameters except the number of samples that we as#rnate the expecta-
tion. It is relatively efficient provided the Markov chainlayer j mixes well, which
is not always the case, unfortunately, as illustrated presty (Tieleman and Hinton,
2009; Desjardins et al., 2010).

Note that this method is only applicable to models from witink can (efficiently)
sample and this is a rather important restriction if one’alg® to come up with gen-
eral methods for inspecting such deep architectures; &tamte, it cannot be be ap-
plied architectures based on auto-encoders (Bengio €t(fl7; Ranzato et al., 2007;
Larochelle etal., 2007; Ranzato et al., 2008; Vincent e2808) or on semi-supervised
learning of similarity-preserving embeddings at eachll@eston et al., 2008).

4.2 Maximizing the activation

We introduce a new idea: we look for input patterns of bounu@dh which maximize
theactivatior? of a given hidden unit; since the activation of a unit in thetfiayer is a
linear function of the input, in the case of the first layeis thput pattern is proportional
to the filter itself, i.e.x - w is maximized forx « w (keeping||x|| fixed).

The reasoning behind this idea is that a pattern to which tiieisi responding
maximally could be a good initial representation of what & isndoing*. One simple
way of doing this is to find, for a given unit, the input samgieem either the training
or the test set) that give rise to the highest activation efuhit. Unfortunately, this
still leaves us with the problem of choosing how many samfudseep for each unit
and the problem of how to “combine” these samples. Ideakyywwuld like to find out

3The total sum of the input to the unit from the previous laylesjits bias.
4This is the reasoning for visualizing first-layer filters Iretinput space, too: they are the inputs to which
the unit responds maximally.



what these samples have in common, i.e. to be able to syneh@sepresentation from
them. Furthermore, it may be that only some elements of {nat ivector contribute to
the high activation, and it may not be easy to determine tlavaat elements simply
by inspection.

Note that we restricted ourselves needlessly to searchimanfinput pattern from
the training or test setor simply from the set of all valid patterns. We can take aenor
general view ananaximizing the activation of a unéts an optimization problem. Let
6 denote our neural network parameters (weights and biasdsesh;; (¢, x) be the
activation of a given unit from a given layer;j in the network;h;; is a function of
bothd and the input sample. Assuming a fixed (for instance, the parameters after
training the network), we can formalize this approach ascééag for

x" =arg max h;;(6,x%).
x st ||x[|=p
This is, in general, a non-convex optimization problem. Big a problem for which
we can at least try to find a local minimum. This can be done easity by performing
simplegradient ascentin the input space, i.e. computing the gradientgf¢, x) and
movingx in the direction of this gradient.

Two scenarios are possible after the optimization congerte same (qualitative)
minimum is found when starting from different random irlidations or two or more
local minima are found. In both cases, the unit can then beactexized by the min-
imum or set of minima found. In the latter case, one can eidlverage the results,
or choose the one which maximizes the activation, or disalbthe local minima ob-
tained to characterize that unit.

This optimization technique (which we call “activation niaization”, or AM) is
applicable to any network in which we can compute the aboeglignts. Like any
gradient descent technique, it does involve a choice of ipgvameters: in particular,
the learning rate and a stopping criterion (the maximum rema gradient ascent
updates, in our experiments).

4.3 Connections between methods

There is an interesting link between the method of maxingizive activation and the
sampling method from section 4.1. By definitiofi[x|h;; = 1] = [xp;(x|h;; =
1)dx. If we consider the extreme case where the distribution eonates atct,
p;(x|hi; = 1) &= dx+(x), then the expectation iB[x|h;; = 1] = xT. On the other
hand, when applying the activation maximization (AM) teicjue to a DBN, we are ap-
proximately® looking for arg maxy p(h;; = 1|x), since this probability is monotonic
in the (pre-sigmoid) activation of unit;;. Using Bayes’ rule and the concentration
assumption aboui(x|h,;; = 1), we find that

%) = p(x|hi; = 1)p(hi; = 1) _ Ss (X)p(hij = 1)
i =1k p(x) p(x)

5Since we are trying tonaximizen,; ;.
Shecause of the approximate optimization and because thedsterjors are intractable for higher layers,
and only approximated by the corresponding neural netwoitlourtputs.



This is zero everywhere except &t so under our assumptionrg maxy p(hi; =
1x) = x™.

More generally, one can show thapifx|h;; = 1) concentrates sufficiently around
xT compared tog(x), then the two methods (expected value over samples vs AM)
should produce very similar results. Generally speakihgs easy to imagine how
such an assumption could be untrue because of the nontieedrivolved. In fact,
what we observe is that although the samples or their avenaydook liketraining
examples the images obtained by AM look more likmage parts which may be a
more accurate representation of what the particular uwitéogl opposition to all the
other units involved in the sampled patterns). This suptiekey and it highlights the
ways in which they are different and complementary.

There is also a link between the gradient updates for makigiithe activation
of a unit and finding the linear combination of weights as dbsd by Lee et al.
(2009). Take, for instancg;., i.e. the activation of unit from layer2 with h;,, =
v’sigmoid(Wx), with v being the unit's weights antd” being the first layer weight
matrix. Thendh;s/0x = v'diag(sigmoid(Wx) x (1 — sigmoid(Wx)))W, wheresx
is the element-wise multiplicationliag is the operator that creates a diagonal matrix
from a vector, and is a vector filled with ones. If the units of the first layer dd satu-
rate, therdh; /0x points roughly in the direction of 17, which can be approximated
by taking the terms with the largest absolute value of

4.4 First investigations into visualizing upper layer units

We shall begin with an investigation into the feasibility wding these methods for
our stated purpose (obtaining informative filter-like egentations). In the course of
these experiments, we will also be able to compare theseoaetind observe their
relative merits in action. More importantly, these expennts will build a basis for our
explorations of invariance manifolds in the latter section

We used three datasets to validate our hypotheses:

e An extended version of the MNIST digit classification databg Loosli et al.
(2007), in which elastic deformations of digits are gerextagtochastically. We
used2.5 million examples as training data, where each example28 a 28
gray-scale image.

e A collection of100, 000 greyscalel2 x 12 patches of natural images, generated
from the collection of whitened natural image patches byh@isen and Field
(1996).

e Caltech Silhouettesa simplified version of the Caltech-101 dataset (Fei-Fei
et al., 2004), in which the shape of the target object wasetd¢d and the entire
image was binarized into a foreground and a background (Matlal., 2009).
The dataset contains approximately 4,100 images of siz2®8»m 101 cate-
gories, with at least 20 and at most 100 examples from easH cla

"The data can be downloaded frévnt p: / / peopl e. cs. ubc. ca/ “bmar | i n/ dat a/ i ndex. sht m



The visualization procedures were tested on the modelgibedcin section 3:
Deep Belief Nets (DBNs) and Stacked Denoising Auto-Ence@®8DAE). The hyper-
parameters are: unsupervised and supervised learnirgy ratmber of hidden units
per layer, and the amount of noise in the case of SDAE; theg wlensen to minimize
the classification error on MNIST and Caltech Silhouettespectivel§ or the recon-
struction errot on natural images, for a given validation set. For MNIST amdtézh
Silhouettes, we show the results obtained after unsugehtigining only; this allows
us to compare all the methods (since it does not make sensemoles from a DBN
after the supervised fine-tuning with backpropagationestaigor the SDAE applied on
natural images, we used salt and pepper noise as a corrdpetibnique, as opposed
to the zero-masking noise described by Vincent et al. (2088¢h symmetric noise
seems to work better with natural images. For the DBN we usgdussian input layer
when modelling natural images; these are more approphatethe standard Bernoulli
units, given the distribution of pixel grey levels in suchgtees (Bengio et al., 2007;
Larochelle et al., 2009).

In the case of AM (section 4.2, Activation Maximization)getprocedure is as fol-
lows for a given unit from either the second or the third layee initialize x to a
vector of28 x 28 or 12 x 12 dimensions in which each pixel is sampled independently
from a uniform over{0; 1]. We then compute the gradient of the activation of the unit
w.r.t. x and make a step in the gradient direction. The gradient epdat continued
until convergence, i.e. until the activation does not iaseefaster than a threshold rate.
Note that after each gradient update, the current estinfaté i3 re-normalized to the
average norm of examples from the respective datas&here is no constraint that
the resulting values ig* be in the domain of the training/test set values. For inganc
we experimented with making sure that the valueg®oére in[0; 1] (for MNIST), but
this produced worse results. On the other hand, the goalffisda “filter’-like result
and a constraint that this “filter” is strictly in the same damas the input image may
not be necessary. Finally, the same optimal value (i.e. tieetloat seems to maximize
activation) for the learning rate of the gradient ascentkawdor all the units from the
same layer.

Sampling from a DBN is done as described in section 4.1, byingthe randomly-
initialized Markov chain and top-down sampling every 100l6& steps. In the case of
the method described in section 2.1, the (subjective) @timamber of previous layer
filters was taken to be 100.

Activation Maximization We begin by the analysis of thactivation maximization
method (AM). Figures 1 and 2 contain the results of the opttidn of units

8We are choosing our hyperparameters based on the superbigetive. This objective is computed by
using the unsupervised networks as initial parameters feersised backpropagation. We chose to select the
hyperparameters based on the classification error becautésfproblem we do have an objective criterion
for comparing networks, which is not the case for the natunalge data.

9For RBMs, the reconstruction error is obtained by treathgRBM as an auto-encoder and computing
a deterministic value using either the KL divergence or theB\iSs appropriate. The reconstruction error of
the first layer RBM is used for model selection.

10sych a procedure is essentially a stochastic gradient metfthdprojection to the constraint at each
step. Itis possible to use better and more complicated opfiiloizenethods—such as conjugate gradient—
but this adds unnecessary complexity (because of the corts@ad, in our experiments, did not lead to
different conclusions.



from the 2nd and 3rd layers of a DBN and an SDAE, along with trst fayer
filters. Figure 1 shows such an analysis for MNIST, while &g shows it for
the natural image data and Caltech Silhouettes.

DBN

SDAE

4 units with 9 solutions per unit for the optimization problem

Figure 1: Activation maximization (AM) applied on MNISTirst two rows visualiza-
tion of 36 units from the first (1st column), second (2nd column) and {{8rd column)
hidden layers of a DBN (top) and SDAE (middle), using the technique afmmaing the
activation of the hidden uniBottom row 4 examples of the solutions to the optimization
problem for units in the 3rd layer of the SDAE, from 9 random initializations.

To test the dependence of this gradient ascent on the iodralitions, 9 different
random initializations were tried. The retained “filter’roesponding to each unit
is the one (out of the 9 random initializations) which maxes the activation.
In the same figures we also show the variations found by tHerdift random
initializations for a given unit from the 3rd layeSurprisingly, most random
initializations yield roughly the same prominent input pattern. Moreover,
we measured the maximum values for the activation functidretquite close to
each other (not shown). Such results are relatively sungrigiven that, gener-
ally speaking, the activation function of a third layer usit highly non-convex

10



function of its input. Therefore, either we are consistehttky, or we are not
sampling from the whole space, or, at least in these paati@ases (a network
trained on MNIST digits, Caltech Silhouettes, or naturahges), the activation
functions of the units tend to be more “unimodal”.

One important point is that, qualitatively speaking, theefg at the 3rd layer
look interpretable and quite complex. For MNIST, some Idk& pseudo-digits.
In the case of natural images, we can observe grating filtaleasecond layer
of DBNs and complicated units that detect, for instancenem at the second
and third layer of SDAE; some of the units have the same clexiatics that we
would associate with VV2-area units (Lee et al., 2008). FdteCh Silhouettes,
a few of the units look like whole-object class detectorsdf for instance),
but most seem to simply encode for the presence or absenegtefgh objects
(likely meaning that the third layer units have managedaoie decomposition
of the input space features that is not as simple as just wdtgksct-class detec-
tion). Such results also suggest that higher level unitedeed learmeaningful
combinations of lower level features.

Note that the first layer filters obtained by the SDAE whennidi on natural
images are Gabor-like features. It is interesting that & ¢hse of the DBN,
the filters that minimized the reconstruction etfoi.e. those that are pictured
in Figure 2 (top-left corner), do not have the same low-fezgry and sparsity
properties like the ones found by the first-level denoisinpancoder. Yet at
the second layethe filters found by activation maximization are a mixture
of Gabor-like features and grating filters. This shows that appearances can
be deceiving: we might have dismissed the RBM whose weigltsaown in
Figure 2 as a bad model of natural images had we looked onhedirst layer
filters, but the global qualitative assessment of this modaich includes the
visualization of the second and third layers, points to tiet that the 3-layer
DBN is in effect learning something quite interesting. Sacgksult suggests that
qualitative model comparison (between SDAE and DBNs in tlaise) cannot
rely entirely on first-layer filter visualizations.

Sampling a unit We now turn to thesampling techniquedescribed in section 4.1.
Figure 3 shows samples obtained by clamping a second layetouth; both
MNIST and natural image patches are considered. In the dasstural image
patches, the distributions are roughly unimodal, in thatdhmples are of the
same pattern, for a given unit. For MNIST, the situationiigtgly more delicate:
there seem to be one or two modes for each'&iniThe averageinput (the
expectation of the distribution), as seen in Figure 4, tloerks like a digit or a
superposition of two digits.

which is only a proxy for the actual objective function thatrimimized by a stack of RBMs.

121t js possible to obtain Gabor-like features with RBMs—work byir@ero and Hinton (2008) shows
that—>but in our case these filters were never those that miadfrtlze reconstruction error of an RBM. This
points to a larger issue: it appears that using differemhleg rates for Contrastive Divergence learning will
induce features that arpialitatively differentdepending on the value of the learning rate.

13This result was obtained with multiple restarts and 20,00ib&steps
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Natural Image Patches
. 3 3 T

DBN

SDAE

5

SDAE

5

Caltech Silhouettes

Figure 2:Activation Maximization (AM) applied on Natural Image Paés (top
and middle row) and Caltech Silhouettes (bottom row). Miga&ion of 144
units from the first (1st column), second (2nd column) anditfBrd column)
hidden layers of a DBN (top row) and an SDAE (middle and bottows), using
the technique of maximizing the activation of the hiddert.unithe 4th column
4 examples of the solutions to the optimization problem fatain the 3rd layer
of the SDAE, subject to 9 random initializations, for natunaages.
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MNIST

el el b bl el

R

Natural Image Patches

Figure 3:Visualization of 6 units from the second hidden layer of a Diédined
on MNIST (top) and natural image patches (bottom). The Vizatons are
produced by sampling from the DBN and clamping the respeciiit to 1. Each
unit’s distribution is a row of samples; the mean of each ®im the first column
of Figure 4 (left).

Note that unlike the results of AM, the samples are much mkedyito be part of
the underlying distribution of examples (digits or patghégvl seems to produce
featuresand it is up to us to decide which examples would “fit” thesefess;
the sampling method producegsamplesind it leaves it to us decide which fea-
tures these examples have in common. In this respect, theethaiques serve
complementary purposes.

Comparison of methods In Figure 4, we can see a comparison of the three tech-
niques: activation maximization, hidden unit samplingd &me linear combi-
nation method, introduced by Lee et al. (2008) and as described in sectibn 2
The methods are tested on the second layer of a DBN trainedMIiS™ In the
above, we noted links between the three techniques. Theimaqrgs show that
many of the filters found by the three methods share somerésatbut have
some differences as well. In general, linear combinatioprefious layer filters
and AM were quite similar, highlighting parts, whereas skngpproduced full
examples.

Unfortunately, we do not have an objective measure thatavalidw us to compare
the three methods, but visually we believe that AM produceseninteresting and
useful results: by comparison, the average samples fromBMare almost always in
the shape of a digit (for MNIST), while the linear combinatimethod seems to find
only parts of the features that are found by AM, which tendiéntd sharper patterns.

AM is applicable to a very large class of models, is concdptisample and pro-
duces high quality visualizations. Moreover, the techailgnds itself to easy, but quite
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MNIST

Natural Image Patches

Figure 4: Visualization of 36 units from the second hidden layer of aNDB
trained on MNIST (top) and 144 units from the second hiddger@af a DBN
trained on natural image patches (bottom). Left: sampliith elamping, Cen-
tre: linear combination of previous layer filters, Right:ximizing the activation
of the unit. Black is negative, white is positive and grayésw
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powerful extensions, as we shall explore next.

5 Uncovering Invariance Manifolds

Thus far our goal has been to obtain a filter-like represimtdbr each unit of the
upper layers. Obtaining such filters is an interesting dgwakent and it allows us
to see that upper layer units correspond to more compliddtets (sometimes even
“template detectors”) and verify some hypotheses that wieabaut deep architectures:
namely that they learn to model interesting features atdrigdvels, that units at those
levels correspond to more complicated V2-area like uniésteowever, such filter-like
representations only characterize a point in the inputespidoey don't really describe
the invariances captured by each unit or each layer. Thandgmart of our inquiry will
address this issue.

A simple approach to solving this problem is by extendingamiivation maximiza-
tion approach to computing some second order visualizatire way was presented
in section 2.3, by Berkes and Wiskott (2066)compute geodetic paths (paths on the
norm constraint / sphere), starting at the maximum of thvat@n function, which
have the smallest rate of change. Another solution is to coeniiie Hessian at the lo-
cal maximum and analyze the directions of principal inva& corresponding to the
eigenvectors of the Hessian with the smallest eigenvalyasioving in the direction of
those eigenvectors (starting from the optimum), while ri@ing on the norm sphere.
For quadratic forms and in the context of Slow Feature Anglysuch an approach
seemed to be fruitful (Berkes and Wiskott, 2002, 2006).

Our attempts at replicating the latter analysis in the cdandé AM and arbitrary
units in the deep layers were not as successful: the eigemseaint in directions that
did not reveal useful insights, as far as we could tell. Otwifion is that such directions
are really a very local measure around the maximum and mayenmeaningful farther
away from it. This locality effect is present in the geodgsth method of Berkes and
Wiskott (2006), where the authors suggest that this methamhiy applicable in “a
small neighbourhood” of the maximum. We would like a methioak tvould trace an
invariance manifold that corresponds to the unit, and wetwas manifold to be less
local (with respect to the maximum found via AM). Ideally, weuld like to see what
pattern of activations it is most invariant to or what maldfthis unit “traces” in the
input space. Finally, our intuition suggests that thesedtiions of invariance should
correspond, roughly speaking, to the changes of the optithatpproduce the smallest
decrease in the activation value, and we would like a moeztlivay of achieving this.

5.1 Invariance Manifolds

A simple way of achieving such goals is to start with the regiven to us by AM
and move as far as possible from it while keeping the activadis large as possible.
Formally, letx,,; be the (best) local optimum found by AM for a given unit. Thea w
re-formulate our optimization problem as follows:

L4for quadratic functions of the input
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Solution after gradient
o ;update (no constraints)

i
]
£

e .. ©  z; = argmaxy fi . — 1)
ik '-':7 b *;""""'-- LR R L T EE T PPN S.:t.:.j_l?g_:,?_c; || = ER
{ | and ||x||=R

éﬁi&:e of feasible solutions (circle)

Solution projected on both constraints

Figure 5: lllustration of the invariance manifold tracing technique3D. x; is the
activation maximization result for unjt, R is the average norm of our inputs, and
eR is the distance fronx; that we want our solutions to be. After each gradient
step (towards maximizing;;), we project the current solution such that it satisfies
the constraints; there are two such projections possible-thtonext iteration of the

optimization problem, we choose the one with the highestatén value.
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* p—
X: =ar max hi; (0,x%).
x s.t. [|x||=p and ||x—Xop:||=cp

where0 < ¢ < 2. By varyinge we can construct a one-dimensional manifold—
represented by the solutior$ in increasing order of—-that has our desired proper-
ties'.

Note that, as before, we require our solutieristo be of some fixed norm as well
(p, as before); removing such a constraint makes the optimizatoblem ill-behaved
(the objective function could otherwise potentially irese without bound). The op-
timization problem can again be solved with simple gradaggcent, starting from a
random point in the space of feasible solutions and projgdid the space of feasi-
ble solutions at each step; projecting exactly onto bottstamts is more complicated
than the simple AM (Activation Maximization) with one norrarestraint, but it follows
from a straightforward algebraic computation.

Figure 5 illustrates this process for an optimization peabiin 3 dimensions. We
remind the reader that for simplicity this procedure is ausege of gradient steps
followed by projection to the constraints. Note that thejgetion operation always has
two solutions (on the opposite sides of the feasible satstmrcle/hypersphere, in our
case) — we always pick the one that results in the highesiadictn value.

As discussed in the introduction to this section, when atiagythe directions of
invariance, as given to us by the eigenvectors of the Hesdidne local maximum
Xopt, We did not observe any qualitatively interesting resul@air hypothesis is that
there are many local directions—corresponding roughly emging the background—
and moving in those directions will not decrease the adtivadf the given unfté.
Such an effect can also occur with our invariance manifattingque: the optimization
procedure could conceivably mox¢ into directions that are of no interest to us (from
a model analysis point of view).

A way to counteract this effect is to move only in directiorisase there is variance
in the data or, equivalently, dampen the directions in wiigre is no variance in the
training data. More specifically, this can be accomplishgddmputing the whitening
matrix 1, via the zero-phase whitening (also called ZCA) transfoBuall(and Se-
jnowski, 1997). This is the matrix which, when multipliedtivik € Dy,...., Spheres
the data, i.e.Cov(y) = I, wherey = Wx. Starting fromy,,; = Wx,,, the search
becomes:
his (0. W y) (1)

*
y. = arg max
y st [[W=ly||=p and [[W=1(y=yop)||=2p

15At ¢ = 2 the two (hyper-)spheres corresponding to the two constraitersect at exactly one point. If
e is larger than 2, then the constraint cannot be satisfied amgyraimce the spheres do not intersect (one is
inside the other). See Figure 5.

18|n other words, the learning procedure has managed to malkeinwétriant to small background trans-
formations.

17An interesting parallel can be made with an experiment thatevespmed, in which, instead of Activa-
tion Maximization weminimizethe activation for each unit. The same “background effects whserved.
This suggests that the “activation landscape” of a hiddehisisimilar to a ridge, in that there are a few
directions of invariance—which are not easy to find—andegaimumber of directions in which we can
move and decrease the activation significantly.
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That is, scale the directions in which we move by the amountasfance that
the training data exhibits in those directions. Algorithmdntains the details of this
procedure in pseudo-code format.

Algorithm 1 Pseudo-code of the invariance computation procedure (gqusk
ing the whitening matrix to scale the directions in which weoqgeed. The
projection(y,ew, constraints(p, , yop)) operator signifies the function that projects
Ynew S-L|[W ™ ynew|| = pand [|W ™" (ynew — yopt)l| = ep-

Require: x,,:, W, and a learning ratg

Yopt = onpt
Ycurrent = Yopt
while not convergedio

A(hij (0, W " Yeurrent))
Ynew = Yeurrent + M- L OY current

Yeurrent = projeCtion(Ynewa constraints(p, 57 YOpt))
end while

* __
ye = Ycurrent

return yz

5.2 Results

We applied this method to a variant of the MNIST datasetgedatinist-rot first pre-
sented by Larochelle et al. (2007). This is a dataset thaaomrotated MNIST digits
(random rotations, angle betweenr andz) and is being used in the community as
a good check for empirically evaluating whether a given dashitecture is able to
capture the rotational invariance in the data.

A sanity check for the invariance manifold technique jusisented is to apply it
to one of the 1Mutputunits, corresponding to the predictions of the network for a
given label. The hypothesis is that the results of the optition technique on such
units should be most interpretable (compared to other imttge network) and should
be quite revealing of the invariances that are captured byptbcess of supervised
learning.

Figure 6 (upper) presents several runs of AM on the outpusuairresponding to
labels 4 and 5. A key observation in this case is thgt does not appear to be uni-
modal (as a function of random starting points). In fact, éuld have been surprising
otherwise: for instance, it is unlikely that the distritmrtiof all rotated four-digits can
be “captured” by a prototypical “four”. Instead, we see aefgrof rotated four- and
five-digits.

Figure 6 (lower) contains an invariance manifold analysis:picked thex,,, for
the four-digit AM which had the highest activation value ahén did four trials in
which we varied the starting point of the optimization; tlésults in aset of invariances
that characterize this unit. In fact, this was the only eletr@& uncertainty in the
optimization process—for a givenwe used the previous:_; (meaning the solution
with a slightly smaller:) as the starting point. The startling observation is thanev
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Output label 4 Output label 5

Activation Maximization results

Set of invariance manifolds

Figure 6: Upper output filter minima for the output units corresponding igit$ 4 and
5 (upper).Lower: A setof invariance manifolds corresponding to digit 4, all stagt
from the same point (the best activation maximization ttg¢suid with a small random
perturbation at the beginning of optimization; a row is onelstrajectory / invariance
manifold
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when only the very initial condition is changed, the invada manifolds (from left to
right on each row) become quite different. These manifolsis seem to interpretable,
as they are capturing the various rotations that the outgtiseem to be able to model.

5.3 Measuring invariance

Using the invariance manifold tool we can get an idea of thariance for a given deep
architecture model. Indeed, note that the activation vafigegiven unitj from a layer
i, hi;(x}) as one varies, can be considered as an indicator of invariance for a given
unit: the slower the unit’s activation decreases as we incredbhe more invariant it is
The intuition is the following: a unit whose activation deogown slowly has “carved”
a manifold of the input space that is sufficiently large thatreif we go far away
from x,,: we can still maintain a high level of activation. Converselyunit whose
activation drops down very fast has carved a small regioh@&pace is therefore only
responsible for only a few variations in the input data.

There is no established notion of a measure of invariancegdfen unit in such
a network. We argue however that, in a sense, our intuitiosnbzaused to reach a
rather generic notion of invariance. Furthermore, to camjity one does not need to
specify a givertypeof invariance (though, as we shall see later in the discos#igs is
also a limitation). This is in contrast with the work of Goetlbw et al. (2009), where
the authors specify a series of input deformations (ratatidranslations, etc) and an
invariance measure that is computed for each unit.

MNIST Natural Image Patches Caltech Silhouettes
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Figure 7:Measuring the invariance of the units from different layénsom left to right,
experiments on MNIST, Natural Image Patches and Calte¢to&fttes, with SDAE.
They-axis plots the sigmoid of the activation (in the log domdanr,clarity) vs. thes
with which we move. The $peed with which the curves decrease is what should be
compared (layer 1 vs. layer 2 vs. layer 3).

The main hypothesis that researchers in deep architedtaresis that the upper
layers of the models become more invariant to input transéions, presumably be-
cause of the increased level of abstraction representegsrlayers. Using our ap-
proach, this becomes a testable hypothesis: we simply wesmhtpute the activation
hi;(x%) of each unit ag increases, for all the units in a given layer. Figure 7 corstai
such an analysis, for MNIST, mnist-rot and Natural ImageRed. We observe that
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in all cases the slope of the activation decrease (asreases) ismaller for the first
layer units compared to the second layer artee second layer slopes for MNIST and
Caltech Silhouettes are smaller than the third layer slagesell. One could use this
method to define a scalar measure of invariance, for instiiaoethe area under the
curve, which can then be used to compare models against dzah What the figure
provides is new evidence to support the earlier obsernatibGoodfellow et al. (2009)
that, in general, units from upper layers appear more iawathan those in the lower
layer.

6 Conclusions and Future Work

We started from a simple desire: to better understand thdigolthat is learned and
represented by a deep architecture, by investigating sgorese of individual units
in the network. Like the analysis of individual neurons i thrain by neuroscien-
tists (Dayan and Abbott, 2001, chapter 2.2), this approashlimitations, but we be-
lieve that such visualization techniques can help undeddae nature of the functions
learned by the network.

We describe three techniques for visualizing deep layatsvaion maximization
(AM) and sampling from an arbitrary unit are both new (to tlesttof our knowledge)
and introduced in this work, while the linear combinationhteique had been previ-
ously introduced by Lee et al. (2008). We show the intuitiveilarities between them
and compared and contrasted them on three datasets. Olis @sfirm our intu-
itions about the hierarchical representations learnedslep @rchitectures: namely that
the higher layer units represent features that possessiingéally) more complicated
structure and correspond to combinations of lower-layatufiees. The three techniques
considered for visualization give rise to meaningfullyfeliént results: as posited in
the introduction, we found that a sampling-based methodymres a distribution of
training-set-like samples, which may require further gssing to make sense of what
specifically the chosen units captures. Conversely, AM (anc lesser extent, the
linear combination method) make it possible to get a “péke-representation of each
unit, an arguably more interpretable representation.

We also find that the two deep architectures considered kpata different fea-
tures. An unexpected result (Figure 2) is the discovery, tbanatural image patches,
uninformative-looking first-layer filters of a Deep Beliekelvork do not necessarily
tell the whole story: we show that second-layer units canehedge detectors and
grating filters in the same model. The implication of thisutess that higher-layer
units can be an important tool for comparing models and plewia justification for
seeking to understand and visualize what the upper-layiés ima deep architecture
do; such a result should be interpreted in the context of téwedsrd approach used
in many papers on deep architectures (Osindero and Hin@08;2 arochelle et al.,
2009), which is that of simply looking at first-layer filterig, addition to test error
performance.

Further leveraging the AM methodology, we turn to the questif exploring the
invariances that are learned by individual units in a nekwatgain, we can cast this
question as an optimization problem. We explore this inib&athe output units of a
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supervised network trained on rotated digits. These eaptors confirm our intuitions
that these manifolds essentially capture the kinds of geirariances present in the
data and learned by the model. Finally, this investigatiaturally provides a way
to visualize and measure invariance. This experiment akbus to compare layers
in a fairly generic way (with respect to how “invariant” theeslage activation of a
unit is, as we move away from the result of AM), without aclyabecifying the set
of invariances by hand, or generating data in any way; as Mith this invariance
analysis is applicable to a large class of deep architexture

The same procedures (AM and invariance analyses) can bie@pplthe weights
obtained aftesupervisedearning and the observations are similar; convergenagrecc
and features seem more complicated at higher layers. Wedieady performed a
basic analysis along these lines—in Erhan et al. (2010),ré&gy8 and 4, where we
show the influence of pre-training on a deep network. Howewerfeel that more
work is needed in order to better understand the qualitatifect of pre-training for
supervised learning and visualization/invariance anmatp®ls could be helpful in this
respect.

We would be interested in comparing with Goodfellow et ab(q®)’s approach of
hand-crafted input transformations (such as translatiatations etc.), and the mea-
surements of invariance of upper-layer units as a functidinese transformations. Our
belief is that analysis methods that rely on specific invarés are limited in the story
they can tell us, because we would like to measure invariemeariations that are not
known a priori. The method we presented in this paper is gemeth respect to the
input transformations and is thus a generic way of measiumivagiance; in this sense,
it is an interesting alternative to Goodfellow et al. (2089pproach. Nonetheless,
one could reasonably question the interpretability of tivaiiance manifolds that our
method uncovers. Would it be possible to project or decomfftesmanifold of a given
unit to a set of known invariances? Could we group the unitt@layer according to
certain types of invariance?

Future research will concentrate on exploring such questiodeally, a future
method for analysis would be able to detail, for a given uthig level of invariance
with respect to (for example) rotation, translation andiegaof the input data and pro-
vide us with an idea of how invariant it is to other transfotimas of the input that are
not in the list. Our work is a step in such a direction. The gsialin Figure 5 could
be extended such that the search space of the invariancéoidasilimited to inputs
corresponding to only rotations (or only translations arjetf x7, the AM output; by
computing curves such as the ones in Figure 7, for each sarcéftrmation separately,
one could then come up with at leastedative notion of invariance, meaning that we
could understand whether a unit is more invariant to rotatior to translations. From
there, we could compare entire layers or model instanceswanmight also be able
to compare the behaviour of higher level units in a deep nétum features and in-
variances that are presumed to be encoded by the highes ttble visual cortex Lee
et al. (2008).
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