
An Empirical Evaluation of Deep Architectures on Problems with
Many Factors of Variation

Hugo Larochelle larocheh@iro.umontreal.ca
Dumitru Erhan erhandum@iro.umontreal.ca
Aaron Courville courvila@iro.umontreal.ca
James Bergstra bergstrj@iro.umontreal.ca
Yoshua Bengio bengioy@iro.umontreal.ca

Dept. IRO, Université de Montréal C.P. 6128, Montreal, Qc, H3C 3J7, Canada

Abstract

Recently, several learning algorithms rely-
ing on models with deep architectures have
been proposed. Though they have demon-
strated impressive performance, to date, they
have only been evaluated on relatively simple
problems such as digit recognition in a con-
trolled environment, for which many machine
learning algorithms already report reasonable
results. Here, we present a series of experi-
ments which indicate that these models show
promise in solving harder learning problems
that exhibit many factors of variation. These
models are compared with well-established
algorithms such as Support Vector Machines
and single hidden-layer feed-forward neural
networks.

1. Introduction

Several recent empirical and theoretical results have
brought deep architectures to the attention of the
machine learning community: they have been used,
with good results, for dimensionality reduction (Hin-
ton & Salakhutdinov, 2006; Salakhutdinov & Hinton,
2007), and classification of digits from the MNIST data
set (Hinton et al., 2006; Bengio et al., 2007). A core
contribution of this body of work is the training strat-
egy for a family of computational models that is simi-
lar or identical to traditional multilayer perceptrons
with sigmoidal hidden units. Traditional gradient-
based optimization strategies are not effective when
the gradient must be propagated across multiple non-
linearities. Hinton (2006) gives empirical evidence that

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

a sequential, greedy, optimization of the weights of
each layer using the generative training criterion of a
Restricted Boltzmann Machine tends to initialize the
weights such that global gradient-based optimization
can work. Bengio et al. (2007) showed that this pro-
cedure also worked using the autoassociator unsuper-
vised training criterion and empirically studied the se-
quential, greedy layer-wise strategy. However, to date,
the only empirical comparison on classification prob-
lems between these deep training algorithms and the
state-of-the-art has been on MNIST, on which many
algorithms are relatively successful and in which the
classes are known to be well separated in the input
space. It remains to be seen whether the advantages
seen in the MNIST dataset are observed in other more
challenging tasks.

Ultimately, we would like algorithms with the capac-
ity to capture the complex structure found in lan-
guage and vision tasks. These problems are charac-
terized by many factors of variation that interact in
nonlinear ways and make learning difficult. For ex-
ample, the NORB dataset introduced by LeCun et al.
(2004) features toys in real scenes, in various light-
ing, orientation, clutter, and degrees of occlusion. In
that work, they demonstrate that existing general al-
gorithms (Gaussian SVMs) perform poorly. In this
work, we propose a suite of datasets that spans some
of the territory between MNIST and NORB–starting
with MNIST, and introducing multiple factors of vari-
ation such as rotation and background manipulations.
These toy datasets allow us to test the limits of cur-
rent state-of-the-art algorithms, and explore the be-
havior of the newer deep-architecture training proce-
dures, with architectures not tailored to machine vi-
sion. In a very limited but significant way, we believe
that these problems are closer to “real world” tasks,
and can serve as milestones on the road to AI.

473



An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation

(a) Linear model
architecture

(b) Single layer
neural network
architecture

(c) Kernel SVM
architecture

Figure 1. Examples of models with shallow architectures.

1.1. Shallow and Deep Architectures

We define a shallow model as a model with very few
layers of composition, e.g. linear models, one-hidden-
layer neural networks and kernel SVMs (see figure
1). On the other hand, deep architecture models are
such that their output is the result of the composition
of some number of computational units, commensu-
rate with the amount of data one can possibly collect,
i.e. not exponential in the characteristics of the prob-
lem such as the number of factors of variation or the
number of inputs. These units are generally organized
in layers so that the many levels of computation can
be composed.

A function may appear complex from the point of view
of a local non-parametric learning algorithm such as a
Gaussian kernel machine, because it has many varia-
tions, such as the sine function. On the other hand,
the Kolmogorov complexity of that function could be
small, and it could be representable efficiently with
a deep architecture. See Bengio and Le Cun (2007)
for more discussion on this subject, and pointers to
the circuit complexity theory literature showing that
shallow circuits can require exponentially more com-
ponents than deeper circuits.

However, optimizing deep architectures is computa-
tionally challenging. It was believed until recently im-
practical to train deep neural networks (except Convo-
lutional Neural Networks (LeCun et al., 1989)), as iter-
ative optimization procedures tended to get stuck near
poor local minima. Fortunately, effective optimization
procedures using unsupervised learning have recently
been proposed and have demonstrated impressive per-
formance for deep architectures.

1.2. Scaling to Harder Learning Problems

Though there are benchmarks to evaluate generic
learning algorithms (e.g. the UCI Machine Learning
Repository) many of these proposed learning problems
do not possess the kind of complexity we address here.

We are interested in problems for which the underly-

ing data distribution can be thought as the product of
factor distributions, which means that a sample corre-
sponds to a combination of particular values for these
factors. For example, in a digit recognition task, the
factors might be the scaling, rotation angle, deviation
from the center of the image and the background of
the image. Note how some of these factors (such as the
background) may be very high-dimensional. In natural
language processing, factors which influence the distri-
bution over words in a document include topic, style
and various characteristics of the author. In speech
recognition, potential factors can be the gender of the
speaker, the background noise and the amount of echo
in the environment. In these important settings, it is
not feasible to collect enough data to cover the input
space effectively; especially when these factors vary in-
dependently.

Research in incorporating factors of variation into
learning procedures has been abundant. A lot of the
published results refer to learning invariance in the
domain of digit recognition and most of these tech-
niques are engineered for a specific set of invariances.
For instance, Decoste and Scholkopf (2002) present a
thorough review that discusses the problem of incorpo-
rating prior knowledge into the training procedure of
kernel-based methods. More specifically, they discuss
prior knowledge about invariances such as translations,
rotations etc. Three main methods are described:

1. hand-engineered kernel functions,

2. artificial generation of transformed examples (the
so-called Virtual SV method),

3. and a combination of the two: engineered kernels
that generate artificial examples (e.g. kernel jit-
tering).

The main drawback of these methods, from our point
of view, is that domain experts are required to ex-
plicitly identify the types of invariances that need to
be modeled. Furthermore these invariances are highly
problem-specific. While there are cases for which man-
ually crafted invariant features are readily available, it
is difficult in general to construct invariant features.

We are interested in learning procedures and architec-
tures that would automatically discover and represent
such invariances (ideally, in an efficient manner). We
believe that one good way of achieving such goals is
to have procedures that learn high-level features (“ab-
stractions”) that build on lower-level features. One of
the main goals of this paper is thus to examine em-
pirically the link between high-level feature extraction
and different types of invariances. We start by describ-

474



An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation

ing two architectures that are designed for extracting
high-level features.

2. Learning Algorithms with Deep
Architectures

Hinton et al. (2006) introduced a greedy layer-wise un-
supervised learning algorithm for Deep Belief Networks
(DBN). This training strategy for such networks was
subsequently analyzed by Bengio et al. (2007) who
concluded that it is an important ingredient in effec-
tive optimization and training of deep networks. While
lower layers of a DBN extract “low-level features” from
the input observation x, the upper layers are supposed
to represent more “abstract” concepts that explain x.

2.1. Deep Belief Networks and Restricted
Boltzmann Machines

For classification, a DBN model with ` layers models
the joint distribution between target y, observed vari-
ables xj and i hidden layers hk made of all binary units
hk

i , as follows:

P (x,h1, . . . ,h`, y) =

(
`−2∏
k=1

P (hk|hk+1)

)
P (y,h`−1,h`)

where x = h0, P (hk|hk+1) has the form given by equa-
tion 1 and P (y,h`−1,h`) is a Restricted Boltzmann
Machine (RBM), with the bottom layer being the con-
catenation of y and h`−1 and the top layer is h`.

An RBM with n hidden units is a parametric model of
the joint distribution between hidden variables hi and
observed variables xj of the form:

P (x,h) ∝ eh′Wx+b′x+c′h

with parameters θ = (W, b, c). If we restrict hi and xj

to be binary units, it is straightforward to show that

P (x|h) =
∏

i

P (xi|h) =
∏

i

sigm(bi +
∑

j

Wjihj) (1)

where sigm is the logistic sigmoid function, and
P (h|x) also has a similar form:

P (h|x) =
∏
j

P (hj |x) =
∏
j

sigm(cj +
∑

i

Wjixi) (2)

The RBM form can be generalized to other conditional
distributions besides the binomial, including continu-
ous variables. See Welling et al. (2005) for a gener-
alization of RBM models to conditional distributions
from the exponential family.

RBM models can be trained by gradient descent. Al-
though P (x) is not tractable in an RBM, the Con-
trastive Divergence gradient (Hinton, 2002) is a good

(a) RBM for x (b) RBM for h1 (c) RBM for h2 and y

Figure 2. Iterative pre-training construction of a Deep Be-
lief Network.

stochastic approximation of ∂ log P (x)
∂θ . The contrastive

divergence stochastic gradient can be used to initial-
ize each layer of a DBN as an RBM. The number of
layers can be increased greedily, with the newly added
top layer trained as an RBM to model the output of
the previous layers. When initializing the weights to
h`, an RBM is trained to model the concatenation of
y and h`−1. This iterative pre-training procedure is
illustrated in figure 2.

Using a mean-field approximation of the conditional
distribution of layer h`−1, we can compute a repre-
sentation ĥ`−1 for the input by setting ĥ0 = x and
iteratively computing ĥk = P (hk|ĥk−1) using equa-
tion 2. We then compute the probability of all classes
given the approximately inferred value ĥ`−1 for h`−1

using the following expression:

P (y|ĥ`−1) =
∑
h`

P (y,h`|ĥ`−1)

which can be calculated efficiently. The network can
then be fine-tuned according to this estimation of the
class probabilities by maximizing the log-likelihood of
the class assignments in a training set using standard
back-propagation.

2.2. Stacked Autoassociators

As demonstrated by Bengio et al. (2007), the idea
of successively extracting non-linear features that “ex-
plain” variations of the features at the previous level
can be applied not only to RBMs but also to autoas-
sociators. An autoassociator is simply a model (usu-
ally a one-hidden-layer neural network) trained to re-
produce its input by forcing the computations to flow
through a “bottleneck” representation. Here we used
the following architecture for autoassociators. Let x
be the input of the autoassociator, with xi ∈ [0, 1],
interpreted as the probability for the bit to be 1. For
a layer with weight matrix W , hidden biases column
vector b and input biases column vector c, the recon-
struction probability for bit i is pi(x), with the vector

475



An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation

(a) Reconst. x (b) Reconst. h1 (c) Predict y

Figure 3. Iterative training construction of the Stacked Au-
toassociators model.

of probabilities:

p(x) = sigm(c + W sigm(b + W ′x)).

The training criterion for the layer is the average of
negative log-likelihoods for predicting x from p(x). For
example, if x is interpreted either as a sequence of
bits or a sequence of bit probabilities, we minimize
the reconstruction cross-entropy:

R = −
∑

i

xi log pi(x) + (1− xi) log(1− pi(x)).

See Bengio et al. (2007) for more details. Once an au-
toassociator is trained, its internal “bottleneck” rep-
resentation (here, sigm(b + W ′x)) can be used as the
input for training a second autoassociator etc. Fig-
ure 3 illustrates this iterative training procedure. The
stacked autoassociators can then be fine-tuned with re-
spect to a supervised training criterion (adding a pre-
dictive output layer on top), using back-propagation
to compute gradient on parameters of all layers.

3. Benchmark Tasks

In order to study the capacity of these algorithms to
scale to learning problems with many factors of vari-
ation, we have generated datasets where we can iden-
tify some of these factors of variation explicitly. We
focused on vision problems, mostly because they are
easier to generate and analyze. In all cases, the classi-
fication problem has a balanced class distribution.

3.1. Variations on Digit Recognition

Models with deep architectures have been shown to
perform competitively on the MNIST digit recogni-
tion dataset (Hinton et al., 2006; Bengio et al., 2007;
Salakhutdinov & Hinton, 2007). In this series of ex-
periments, we construct new datasets by adding addi-
tional factors of variation to the MNIST images. The
generative process used to generate the datasets is as
follows:

Figure 4. From top to bottom, samples from mnist-rot,
mnist-back-rand, mnist-back-image, mnist-rot-back-image.

1. Pick sample (x, y) ∈ X from the digit recognition
dataset;

2. Create a perturbed version x̂ of x according to
some factors of variation;

3. Add (x̂, y) to a new dataset X̂ ;

4. Go back to 1 until enough samples are generated.

Introducing multiple factors of variation leads to the
following benchmarks:

mnist-rot: the digits were rotated by an angle gener-
ated uniformly between 0 and 2π radians. Thus
the factors of variation are the rotation angle and
those already contained in MNIST, such as hand
writing style;

mnist-back-rand: a random background was inserted
in the digit image. Each pixel value of the back-
ground was generated uniformly between 0 and
255;

mnist-back-image: a random patch from a black and
white image was used as the background for the
digit image. The patches were extracted ran-
domly from a set of 20 images downloaded from
the internet. Patches which had low pixel vari-
ance (i.e. contained little texture) were ignored;

mnist-rot-back-image: the perturbations used in
mnist-rot and mnist-back-image were combined.

These 4 databases have 10000, 2000 and 50000 samples
in their training, validation and test sets respectively.
Figure 4 shows samples from these datasets.

476



An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation

Figure 5. From top to bottom, samples from rectangles and
rectangles-image.

3.2. Discrimination between Tall and Wide
Rectangles

In this task, a learning algorithm needs to recognize
whether a rectangle contained in an image has a larger
width or length. The rectangle can be situated any-
where in the 28 × 28 pixel image. We generated two
datasets for this problem:

rectangles: the pixels corresponding to the border of
the rectangle has a value of 255, 0 otherwise. The
height and width of the rectangles were sampled
uniformly, but when their difference was smaller
than 3 pixels the samples were rejected. The top
left corner of the rectangles was also sampled uni-
formly, constrained so that the whole rectangle
would fit in the image;

rectangles-image: the border and inside of the rectan-
gles corresponds to an image patch and a back-
ground patch is also sampled. The image patches
are extracted from one of the 20 images used for
mnist-back-image. Sampling of the rectangles is
essentially the same as for rectangles, but the area
covered by the rectangles was constrained to be
between 25% and 75% of the total image, the
length and width of the rectangles were forced to
be of at least 10 and their difference was forced to
be of at least 5 pixels.

We generated training sets of size 1000 and 10000 and
validation sets of size 200 and 2000 for rectangles and
rectangles-image respectively. The test sets were of
size 50000 in both cases. Samples for these two tasks
are displayed in figure 5.

3.3. Recognition of Convex Sets

The task of discriminating between tall and wide rect-
angles was designed to exhibit the learning algorithms’
ability to process certain image shapes and learn their
properties. Following the same principle, we designed
another learning problem which consists in indicating
if a set of pixels forms a convex set.

Figure 6. Samples from convex, where the first, fourth, fifth
and last samples correspond to convex white pixel sets.

Like the MNIST dataset, the convex and non-convex
datasets both consist of images of 28× 28 pixels. The
convex sets consist of a single convex region with pixels
of value 255 (white). Candidate convex images were
constructed by taking the intersection of a random
number of half-planes whose location and orientation
were chosen uniformly at random.

Candidate non-convex images were constructed by
taking the union of a random number of convex sets
generated as above. The candidate non-convex im-
ages were then tested by checking a convexity con-
dition for every pair of pixels in the non-convex set.
Those sets that failed the convexity test were added to
the dataset. The parameters for generating the convex
and non-convex sets were balanced to ensure that the
mean number of pixels in the set is the same.

The generated training, validation and test sets are of
size 6000, 2000 and 50000 respectively. Samples for
this tasks are displayed in figure 6.

4. Experiments

We performed experiments on the proposed bench-
marks in order to compare the performance of mod-
els with deep architectures with other popular generic
classification algorithms.

In addition to the Deep Belief Network (denoted
DBN-3) and Stacked Autoassociators (denoted SAA-
3) models, we conducted experiments with a sin-
gle hidden-layer DBN (DBN-1), a single hidden-layer
neural network (NNet), SVM models with Gaussian
(SVMrbf ) and polynomial (SVMpoly) kernels.

In all cases, model selection was performed using a val-
idation set. For NNet, the best combination of number
of hidden units (varying from 25 to 700), learning rate
(from 0.0001 to 0.1) and decrease constant (from 0 to
10−6) of stochastic gradient descent and weight decay
penalization (from 0 to 10−5) was selected using a grid
search.

For DBN-3 and SAA-3, both because of the large
number of hyper-parameters and because these mod-
els can necessitate more than a day to train, we
could not perform a full grid search in the space

477



An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation

of hyper-parameters. For both models, the number
of hidden units per layer must be chosen, in ad-
dition to all other optimization parameters (learn-
ing rates for the unsupervised and supervised phases,
stopping criteria of the unsupervised phase, etc.).
The hyper-parameter search procedure we used al-
ternates between fixing a neural network architecture
and searching for good optimization hyper-parameters
in a manner similar to coordinate descent. See
http://www.iro.umontreal.ca/~lisa/icml2007 for
more details about this procedure. In general, we
tested from 50 to 150 different configurations of hyper-
parameters for DBN-3 and SAA-3. The layer sizes
varied in the intervals [500, 3000], [500, 4000] and
[1000, 6000] respectively for the first, second and third
layer and the learning rates varied between 0.0001 and
0.1. In the case of the single hidden layer DBN-1
model, we allowed ourselves to test for much larger
hidden layer sizes, in order to balance the number
of parameters between it and the DBN-3 models we
tested.

For all neural networks, we used early stopping based
on the classification error of the model on the vali-
dation set. However during the initial unsupervised
training of DBN-3, the intractability of the RBM
training criterion precluded the use of early stopping.
Instead, we tested 50 or 100 unsupervised learning
epochs for each layer and selected the best choice based
on the final accuracy of the model on the validation set.

The experiments with the NNet, DBN-1, DBN-3 and
SAA-3 models were conducted using the PLearn1 li-
brary, an Open Source C++ library for machine learn-
ing which was developed and is actively used in our
lab.

In the case of SVMs with Gaussian kernels, we per-
formed a two-stage grid search for the width of the
kernel and the soft-margin parameter. In the first
stage, we searched through a coarse logarithmic grid
ranging from σ = 10−7 to 1 and C = 0.1 to 105. In
the second stage, we performed a more fine-grained
search in the vicinity of that tuple (σ,C) that gave
the best validation error. In the case of the polyno-
mial kernel, the strategy was the same, except that we
searched through all possible degrees of the polynomial
up to 20, rendering the fine-grained search on this pa-
rameter useless. Conforming to common practice, we
also allowed the SVM models to be retrained on the
concatenation of the training and validation set using
the selected hyper-parameters. Throughout the exper-

1See http://www.plearn.org/

iments we used the publicly available library libSVM
(Chang & Lin, 2001), version 2.83.

For all datasets, the input was normalized to have val-
ues between 0 and 1. When the input was binary
(i.e. for rectangles and convex), the Deep Belief Net-
work model used binary input units and when the in-
put was in [0, 1]n (i.e. for mnist-rot, mnist-back-rand,
mnist-back-imag, mnist-rot-back-image and rectangles-
image) it used truncated exponential input units (Ben-
gio et al., 2007).

4.1. Benchmark Results

The classification performances for the different learn-
ing algorithms on the different datasets of the bench-
mark are reported in table 1. As a reference for the
variations on digit recognition experiments, we also
include the algorithms’ performance on the original
MNIST database, with training, validation and test
sets of size 10000, 2000 and 50000 respectively. Note
that the training set size is significantly smaller than
that typically used.

There are several conclusions which can be drawn
from these results. First, taken together, deep archi-
tecture models show globally the best performance.
Seven times out of 8, either DBN-3 or SAA-3 are
among the best performing models (within the con-
fidence intervals). Four times out of 8 the best ac-
curacy is obtained with a deep architecture model (ei-
ther DBN-3 or SAA-3). This is especially true in three
cases: mnist-back-rand, mnist-back-image and mnist-
rot-back-image, where they perform better by a large
margin. Also, deep architecture models consistently
improve on NNet, which is basically a shallow and to-
tally supervised version of the deep architecture mod-
els.

Second, the improvement provided by deep architec-
ture models is most notable for factors of variation re-
lated to background, especially in the case of random
background, where DBN-3 almost reaches its perfor-
mance on mnist-basic. It seems however that not all of
the invariances can be learned just as easily–an exam-
ple is the one of rotation, where the deep architectures
do not outperform SVMs. SVMrbf does achieve an
impressive result; we believe that this is possible be-
cause of the large number of samples in the training
set (the input space is well populated) and because
there is only one factor applied (contrast this with the
score we obtain with SVMrbf on mnist-rot-back-image
where the presence of two factors creates a less well-
behaved input space)

Third, even though SAA-3 and DBN-3 provide con-

478



An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation

Table 1. Results on the benchmark for problems with factors of variation (in percentages). The best performance as well
as those with overlapping confidence intervals are marked in bold.

Dataset SVMrbf SVMpoly NNet DBN-1 SAA-3 DBN-3
mnist-basic 3.03±0.15 3.69±0.17 4.69±0.19 3.94±0.17 3.46±0.16 3.11±0.15
mnist-rot 10.38±0.27 13.61±0.30 17.62±0.33 12.11±0.29 11.43±0.28 12.30±0.29
mnist-back-rand 14.58±0.31 16.62±0.33 20.04±0.35 9.80±0.26 11.28±0.28 6.73±0.22
mnist-back-image 22.61±0.37 24.01±0.37 27.41±0.39 16.15±0.32 23.00±0.37 16.31±0.32
mnist-rot-back-image 32.62±0.41 37.59±0.42 42.17±0.43 31.84±0.41 24.09±0.37 28.51±0.40
rectangles 2.15±0.13 2.15±0.13 7.16±0.23 4.71±0.19 2.41±0.13 2.60±0.14
rectangles-image 24.04±0.37 24.05±0.37 33.20±0.41 23.69±0.37 24.05±0.37 22.50±0.37
convex 19.13±0.34 19.82±0.35 32.25±0.41 19.92±0.35 18.41±0.34 18.63±0.34

sistent improvement over NNet, these models are still
sensitive to hyper-parameter selection. This might ex-
plain the surprising similarity of the results for SAA-3
on mnist-back-image and mnist-rot-back-image, even
though the former corresponds to an easier learning
problem than the latter.

4.2. Impact of Background Pixel Correlation

Looking at the results obtained on mnist-back-rand
and mnist-back-image by the different algorithms, it
seems that pixel correlation contained in the back-
ground images is the key element that worsens the
performances. To explore the disparity in performance
of the learning algorithms between MNIST with in-
dependent noise and MNIST on a background image
datasets, we made a series of datasets of MNIST dig-
its superimposed on a background of correlated noisy
pixel values.

Correlated pixel noise was sampled from a zero-mean
multivariate Gaussian distribution of dimension equal
to the number of pixels: s ∼ N (0,Σ). The co-
variance matrix, Σ, is specified by a convex combi-
nation of an identity matrix and a Gaussian kernel
function (with bandwidth σ = 6) with mixing co-
efficient γ. The Gaussian kernel induced a neigh-
borhood correlation structure among pixels such that
nearby pixels are more correlated than pixels further
apart. For each sample from N (0,Σ), the pixel values
p (ranging from 0 to 255) were determined by pass-
ing elements of s through the standard error function
pi = erf(si/

√
2) and multiplying by 255. We gener-

ated six datasets with varying degrees of neighborhood
correlation by setting the mixture weight γ to the val-
ues {0, 0.2, 0.4, 0.6, 0.8, 1}. The marginal distributions
for each pixel pi is uniform[0,1] for each value of γ. Fig-
ure 7 shows some samples from the 6 different tasks.

We ran experiments on these 6 datasets, in order to

Figure 7. From left to right, samples with progressively less
pixel correlation in the background.

Figure 8. Classification error of SVMrbf , SAA-3 and
DBN-3 on MNIST examples with progressively less pixel
correlation in the background.

measure the impact of background pixel correlation on
the classification performance. Figure 8 shows a com-
parison of the results obtained by DBN-3, SAA-3 and
SV Mrbf . In the case of the deep models, we used the
same layer sizes for all six experiments. The selected
layer sizes had good performance on both mnist-back-
image and mnist-back-rand. However, we did vary the
hyper-parameters related to the optimization of the
deep networks and chose the best ones for each prob-
lems based on the validation set performance. All
hyper-parameters of SV Mrbf were chosen according
to the same procedure.

It can be seen that, as the amount of background pixel
correlation increases, the classification performance of

479



An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation

all three algorithms degrade. This is coherent with
the results obtained on mnist-back-image and mnist-
back-rand. This also indicates that, as the factors of
variation become more complex in their interaction
with the input space, the relative advantage brought
by DBN-3 and SAA-3 diminishes. This observation
is preoccupying and implies that learning algorithms
such as DBN-3 and SAA-3 will eventually need to be
adapted in order to scale to harder, potentially “real
life” problem.

One might argue that it is unfair to maintain the same
layer sizes of the deep architecture models in the pre-
vious experiment, as it is likely that the model will
need more capacity as the input distribution becomes
more complex. This is a valid point, but given that,
in the case of DBN-3 we already used a fairly large
network (the first, second and third layers had respec-
tively 3000, 2000 and 2000 hidden units), scaling the
size of the network to even bigger hidden layers im-
plies serious computational issues. Also, for even more
complex datasets such as the NORB dataset (LeCun
et al., 2004), which consists in 108 × 108 stereo im-
ages of objects from different categories with many
factors of variation such as lighting conditions, eleva-
tion, azimuth and background, the size of the deep
models becomes too large to even fit in memory. In
our preliminary experiments where we subsampled the
images to be 54×54 pixels, the biggest models we were
able to train only reached 51.6% (DBN-3) and 48.0%
(SAA-3), whereas SV Mrbf reached 43.6% and NNet
reached 43.2%. Hence, a natural next step for learn-
ing algorithms for deep architecture models would be
to find a way for them to use their capacity to more
directly model features of the data that are more pre-
dictive of the target value.

Further details of our experiments
and links to downloadable versions of
the datasets are available online at:
http://www.iro.umontreal.ca/~lisa/icml2007

5. Conclusion and Future Work

We presented a series of experiments which show that
deep architecture models tend to outperform other
shallow models such as SVMs and single hidden-layer
feed-forward neural networks. We also analyzed the
relationships between the performance of these learn-
ing algorithms and certain properties of the problems
that we considered. In particular, we provided em-
pirical evidence that they compare favorably to other
state-of-the-art learning algorithms on learning prob-
lems with many factors of variation, but only up to a
certain point where the data distribution becomes too

complex and computational constraints become an im-
portant issue.

Acknowledgments

We would like to thank Yann LeCun for suggestions
and discussions. We thank the anonymous reviewers
who gave useful comments that improved the paper.
This work was supported by NSERC, MITACS and
the Canada Research Chairs.

References

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H.
(2007). Greedy layer-wise training of deep networks.
Advances in Neural Information Processing Systems 19.
MIT Press.

Bengio, Y., & Le Cun, Y. (2007). Scaling learning algo-
rithms towards AI. In L. Bottou, O. Chapelle, D. De-
Coste and J. Weston (Eds.), Large scale kernel machines.
MIT Press.

Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a li-
brary for support vector machines. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Decoste, D., & Scholkopf, B. (2002). Training invariant
support vector machines. Machine Learning, 46, 161–
190.

Hinton, G. (2002). Training products of experts by mini-
mizing contrastive divergence. Neural Computation, 14,
1771–1800.

Hinton, G. (2006). To recognize shapes, first learn to gen-
erate images (Technical Report UTML TR 2006-003).
University of Toronto.

Hinton, G., & Salakhutdinov, R. (2006). Reducing the
dimensionality of data with neural networks. Science,
313, 504–507.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learn-
ing algorithm for deep belief nets. Neural Computation,
18, 1527–1554.

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard,
R., Hubbard, W., & Jackel, L. (1989). Backpropaga-
tion applied to handwritten zip code recognition. Neural
Computation, 1, 541–551.

LeCun, Y., Huang, F.-J., & Bottou, L. (2004). Learning
methods for generic object recognition with invariance
to pose and lighting. Proceedings of CVPR’04. IEEE
Press.

Salakhutdinov, R., & Hinton, G. (2007). Learning a nonlin-
ear embedding by preserving class neighbourhood struc-
ture. To Appear in Proceedings of AISTATS’2007.

Welling, M., Rosen-Zvi, M., & Hinton, G. (2005). Expo-
nential family harmoniums with an application to infor-
mation retrieval. Advances in Neural Information Pro-
cessing Systems 17. MIT Press.

480


