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Building a QSAR model of a new biological target for which few screening data are available is a statistical
challenge. However, the new target may be part of a bigger family, for which we have more screening data.
Collaborative filtering or, more generally, multi-task learning, is a machine learning approach that improves
the generalization performance of an algorithm by using information from related tasks as an inductive
bias. We use collaborative filtering techniques for building predictive models that link multiple targets to
multiple examples. The more commonalities between the targets, the better the multi-target model that can
be built. We show an example of a multi-target neural network that can use family information to produce

a predictive model of an undersampled target. We evaluate JRank, a kernel-based method designed for
collaborative filtering. We show their performance on compound prioritization for an HTS campaign and
the underlying shared representation between targets. JRank outperformed the neural network both in the
single- and multi-target models.

1. INTRODUCTION Interestingly, such multiple related tasks do exist in the
pharmaceutical industry, where they are commonly called a
target clasqe.g., kinases, G-protein coupled receptors, and
maybe ion channels). These target classes have some
common features. First, they represent some significant
portion of a therapeutic area. Some members of these target
'classes have been well studied. Second, targets within each
of these target classes share a common structural frame.
] . ~ Members of each target class may have a similar binding
Many aspects of this process use machine leamingijte Third, with the development of genomic projects, many
techniques. Standard machine learning considers a single ey, members of these target classes have been identified,
learning task at a time. For example, learning to predict  {hoygh the biological roles of these newcomers (so-called
from X using a set of pairsq, y). Instead, humans learn a  orphans) are still unknown. The challenge we are facing here
variety of tasks, and it is believed that there are inter- is how to transfer our knowledge from known targets to
actions between these learning processes, which are fruitfulorphans_ The traditional statistical approach considers a

because of shared underlying mechanisms. It has alreadyyiterent machine learning task for each member of a given
been shown theoretically and practicéitythat taking into 355 Our objective is to compare and evaluate methods to

account multiple related tasks can be greatly beneficial 10 51 advantage of the commonalities between the different
generalization, if the_ tasks are sufficiently related. [A_ tasks within a target class. In addition, we should also
necessary and sufficient condition for task relatedness 'Sdevelop a solution that allows us to estimate QSAR models

roughly the following: there exists a simp{eperhf’ips in for orphans that have not yet been tested or for which there
the Kolmogorov complexiysense-model that describes the are very little available data.

joint distribution of inputs, outputs, and task than the separate ) ,
models and inputs and outputs that one would obtain W€ emphasize here that the goal of our approach is not
separeately for each task.] From a neural network perspective,to create the best global predictive model for a collection of

this is due to a product increase of examples correspondingdccurately known targets. Here, we assume that we do not
to a summation increase in targets. Of course, if the addedknoW the structure of the targets because we want to

targets are unrelated, the generalization power will decrease 9€neralize to a new unknown target. We have thus developed
a practical approach where very little prior knowledge of

* Corresponding author e-mail: erhandum@iro.umontreal.ca; phone: the target is needed. We aCk_n0W|edge thata fu_" r_nultl-tar_get
(514)343-6111, ext. 1794. model would need a much higher level of description, which

The developments of combinatorial chemistry and high
throughput screening (HTS) provide the pharmaceutical
industry with a great opportunity to filter millions of
compounds in a short time for a given target. HTS data can
be used to generate virtual screening models, which in turn
can be used to further virtually screen even more com-
poundst
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would need many more targeligand pairs than our data Aciy ]

set. We also underline that we are less interested in building _ TV

the best model for a single target than building a model for oo

which we lack sufficient data. B \A
For this paper, we have studied a set of compounds which Tt Foddn Ly

have been used to screen a set of related targets in : | X

AstraZeneca’'s HTS campaigns. We first built up the models T

of single targets and then selected some of those most related
targets to perform multiple target analysis. To improve
prediction power, we also added descriptors of the target
(i.e., the task) as side information to help in building the procedures that will be at least as good as single-target
multi-task model. We compared the results from two different |earning and that will outperform single-target learning for
schemes, both seen as collaborative filtering models: a multi- smal| undersampling fractions. We want to test the hypothesis
task neural network and a kernel-based ranking algorithm that such a procedure can be successful in the context of
called JRank. The analysis of the results allows to conclude yyjtj-target HTS data.

on the performance of these two algorithms and on the e present two machine learning methods that we will

I
Figure 1. Multi-task neural network architecture.

contributions of the target descriptors. use to test our hypotheses. The first is a custom-built neural
network (which we refer to as a “Multi-Target Neural
2. METHODOLOGY Network” or a “Multi-Task Neural Network”) and the second

is a kernel-based collaborative filtering algorithm called
To test the efficiency of a multi-target scenario, we need JRank. Both methods can deal with both single-target and
a framework that would provide an estimate of target multi-target learning and are, therefore, quite suitable for
“relatedness”. Such a framework can then be used to decidetesting our hypotheses.
whether multi-target learning makes sense in the first place  The methods take advantage of prior knowledge about the
before proceeding to the actual HTS campaign for a new receptors. The idea is to choose a representation of each
target. receptor and to train a model to predict a single scalar (e.g.,
The framework that we devised works as follows. Assume Probability of percentage inhibition) given both the repre-
that we have a set of targets from the same family with Sentation of the compound and the representation of the target
enough screening data for each target. For each of them, weeceptor protein. Because the representation of receptors is

construct two data sets: generic (and can accommodate receptors other than those
1. A training set that contains the screening data for all for which assay results are available), this approach can in

the targets except the current omdus a fixed small principle generalize to new receptors.

percentage of the screening data for the current target. 2.1. Multi-Task Neural Network. The approach of

2. A testing set that contains the rest of the screening data™0d€ling more than one target at a time falls into a broad
for the current target. category of machine learning approaches, called multi-task

learning® Such techniques were first developed in the context
Pf multi-layer neural networks, which were modified so as
to allow the process ohductive transfer(from one modeling
task to another) to take place. The simplest of such
modifications would be increasing the number of output units

By training an algorithm on the first data set and testing
on the second one and then comparing the performance o
this algorithm with the performance of some other algorithm
that does standard, single-target, QSAR modeling (with the

training set containing just the fixed small percentage of the .
g 9] P 9 jo be equal to the number of tasks, but various other

reenin for th rrent tar w n wheth : X . X
screening data for the current target), we can see whet etechnlques exist that allowiasingthe modeling process of

ing th reenin ta for the rest of the targets improv
;dedregsultes: screening data for the rest of the targets impro eSone task by the other tasks.

The reasoning behind choosing a small percentage is In our case, the basic architecture of the neural network
. 9 , g 1al PErcetage 1Smq4el (Figure 1) has two hidden layérsThe first hidden
simple—we want an algorithm to generalize well given a

newtaraet. for which we have not enouah screening data layer is committed to biological descriptors, to discover a
and tha%is’a uite realistic scenario. A ste?ndard sin Ig—tar e’tlow-dimensional embedding for targets.

QSAR mode(lq that is trained on a émall data set vgill mogt In one version (eq 1), we use in input of the first layer a
likely have a poor performance; ideally, an algorithm that one-hot variable (a vector full of zeros except B 1 at
does multi-target learning (using the above-mentioned train- positioni for coding symbol) indicating the target protein.

ing set) should perform no worse than such a single-tar etThe second layer receives the output of the first layer and
m?) del P 9 9he chemical descriptors of the compounds. This architecture

I th q ’ K he ab q will learn an individual predictive model for each target, but
_ We call the procedure of making the above data Sets e first Jayer will contain information about the relatedness
undersampling”. Our intention is to try to see the effects

; . . of targets in regard to their ligand activity:
of undersampling on both multi-target and single-target data g ¢ g y

at several fixed percentages (which we sometimes call P(activd % i):sigmoi {Vtanh@x+ B tanhVe))) (1)
“undersampling fractions”) of the screening data for the
targets in our data set. whereg is the one-hot variable defined above. In another

One of the assumptions behind our experiments is thatversion (eq 2), we use threading-based target descriptors in
the targets are related in some way that is encoded in ourthe first layer. The target model is a set of 25 binding site
data sets. Our goal is to obtain multi-target learning pocket fingerprints. Here we learn an indirect predictive
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model for each target: are used to encode similarities between items (compounds)
and between users (protein targets). These two types of

Plactive% 1> T) = gigmoidV tanh@x + B tanhCTeg))) (2) similarities need to be combined into a function that

computes a “similarity measure” between usiem pairs.

The parameters of the neural netwoyk A, B, W) or (V, Such a measure can then be used to exploit efficiently the
A, B, C) are tuned by stochastic gradient asest the user and item features and to try to uncover a relationship
average log-likelihood of the training set (average of the between useritem (or target-compound) pairs and the
logarithm of the above probabilities). The number of hidden activity rates (the ultimate goal of a QSAR technique).
units (e.g., dimension of) and optimization parameters are The underlying structure of the algorithm is very similar
selected using a validation set disjoint from the test set.  to the original perceptrotf,which means that it has several

2.2. JRank.In this section, we present a machine learning useful characteristics such as its simplicity and its online
algorithm that was proposed for collaborative filtering nature. It can also take advantage of Mercer kethels
applications. We describe the way it can be applied for the (including custom-built kernels for collaborative filtering
problem of multi-target QSAR and provide a pseudo-code problemsj)-of the type used in Support Vector Machine
as well as general intuitions behind the algorithm. algorithmg6—in order to find a separating hyperplane in a

2.2.1. Collaborative Filtering and Multi-Task Learning. high-dimensional space and can be used, therefore, for
Collaborative filtering®!! has its roots in recommender finding highly nonlinear solutions (such an extension of the
systems applications, whereby automated recommendationgerceptron algorithm is typically referred to as tkernel
are produced. Such recommendations are based on similariperceptrod’).
ties between the preferences of different users of the system. Below we follow the notation and description of JRank
Typical collaborative filtering data sets usually include some from reference 13. The basic idea of the algorithm is to unify
form of demographic data about the users of the system andthe target and compound features in a joint feature space in
or some basic facts about the items (movies, songs, etc.) thatvhich distances (inner products) can be computed easily.
are rated. Evidently, such data could be useful in im- We could then try to find a maly that takes elements, )
proving the generalization performance of the algorithm, into W(t, c) €RP, wheret is the vector of target features
especially when for some user or item there is only a small andc is the vector of compound features for a given target
number of ratings available. Systems that make use of suchcompound pair (withD being the-possibly infinite—
extra data have been termed esntent-based filtering dimension of the resulting combined space). Such a map
algorithms. would allow us to compute similarities betweeairs of

The parallel with multi-target QSAR can be made almost targets/compounds and would allow us to generalize across
immediately: the “users” are the biological targets, the both target features and compound features at the same time.
“jtems” are the molecular compounds (or vice-versa), and Let & be the set of targets; be the set of compounds,
the “ratings” are the levels of activity of the given compound and the map be¥: & x ¢ — RP, which gives a
for a given target. The descriptors or the features of the D-dimensional feature vector for each targebmpound pair.
targets and of the compounds could be anything that might Our goal is then to choose a function (which should be
help us in uncovering relationships both between the targetsoptimal in some sense) from the set of functidhswhich

and the items. are linear in®, i.e.
Ideally, one is interested in using all the data that is T
available-both ratings and user/item descriptesch that F(t, c;w) = W(t, c)'w 3)

the algorithm could exploit to the maximum the relationships (whereT is the transpose). This function would encode (in

between the users, items and the ratings. Such an algonthma linear fashion) the relationship between the features of pairs

:‘,i\feurliz besi;? 212:;?:;?0fazoggz(gs;\ilse%r}?‘ gogﬁgt'beansgglof targets and compounds and the respective activity levels.
9- 9 The output of such a function is binned via a set of

;rg(r)r:/eew?/\r;(e (():t)rr?suiggalzzrﬁﬁmlt%ge W?;?Qremisp(r)?sc?nnéegser adaptive threshold® € R, wherek is the number of activity
: 9 b levels we are interested if= +oo for convenience). This

given the user's past ratings, and the features of the 'MSs done in order to predict the activity level from a target

as one “tasic’. For a given n_umber of users (and, po;sibly, compound pair: by simply selecting the number of the bin
ftgrgfsfe:;léreseﬁzog'atfgﬁ\{v:}rgrt:?mg’é’\c')?n%?#ﬁigr?mbme thewhere F(t, c; w) falls into. The prediction functiof (t, c;
Getting b’agk to gu’r F()QSAR setting, we can easi.ly notice - 0) erend.s straightforwardly off i.t outputs a level
that a standard one-target QSAR can be seen as a (modelin ssociated with the interva{ 6+1) which contains=(t, ¢
“task” and that multi-target QSAR is just a form of multi-
task learning. The collaborative filtering technique that we
tested in such a setting is the so-called JRank kernel
perceptron algorithn® It is an algorithm that performs
ordinal regression (i.e., our “ratings” are ordinal values, and
we are not modeling their absolute values but their order;
see section 2.2.3) and that is an extension (in both the
collaborative filtering sense and in the sense that uses kernels) A — T+
of the PRank algorithri K& 0.t €)= Wt o -P(T, ©) @
2.2.2. Unifying Target and Compound FeaturesThe As shown in refs 14 and 16, one can rewrite eq 3
algorithm makes use of kernels (similarity measures). Thesevia the kernel defined in eq 4 as follows, thanks to

Note thatW(t, c) from eq 3 is not computed directly (for
reasons that will become clearer a bit later) and that our
algorithm is only using dot products in the feature space
defined byW. The dot product between the application of
W on two pairs is referred to askernel More precisely,
for two given pairs{, c) and ¢', c'), we define the kernel as
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the Representer Theorem:

Ftoo)= Y oKt o) (', ¢))
(t'c)

(®)

Thus if we can compute efficiently the dot product from eq
4, then we do not need to explicitly compute the feature
vectors given byV. This is important because the computa-
tion of ¥ may be impractical if we want this nonlinear
transformation to be rich enough: in practice we choose not
W but the kerneK, and for many choices of interest fig,
the corresponding® is infinite-dimensional. The only
constraint on the choice #fis that it must be positive semi-
definite. It means that for any finite se? of pairsp;, the
Gram matrixG associated witl’must not have any negative
eigenvalues. The entry, §) of Gis G; = K(s, 5) with s €
SLands € £

In our case, we must define a kernel over target
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2.2.3. The Algorithm. As previously mentioned, JRank
works in the framework obrdinal regression This means
that we define an order among the activity levels and that
we do not interpret their numerical value. This is appropriate
for both binary classification problemsvhere we would
interpret the two activity levels as “more active” and “less
active™—and for multi-class/regression problems, where the
transformation of the numerical values to an ordinal scale
poses no problem.

Algorithm 1, proposed in ref 13, is a straightforward

Algorithm 1 JRank
1: {er is a sparse parameter matrix, with one element per experimental observation}
2 {:\[‘_c] is the activity level the compound with features ¢ given target with features t}
& ey = 0,540
4: {8 is a vector of thresholds, defining the bins for the ordinal values}

6B =0vi=1,.. k—1and & = +oc
i { N is the number of iterations}
7: for n =1 to Ny, do

s for all Ay . do
4 {The estimated activity level (equation 3)}
1 a= flt,eio. @)

compound pairs. We take a bottom-up approach, by first i {if the estimated activiey level is incorrect, we update the learnt parameters}
defining similarity measures between pairs of targets, then i {iinte, e e
between pairs of compounds, and then combining the two '

measures into a kernel function of the desired type. Thus, 1 i-.;l;l]:’:‘ﬂtf_f',}ffffi?lﬂﬁfi"" oS closer o the comeet bin a the pext feration)
we use the following kernels: e ik
1. an identity kernel7'%, which returns one if the two = elseif i< Auc then
targets have the same feature vector and zero otherwise, » oo oot
2. a Gaussian kerne#Z'% (e.g., see ref 16), o }:f‘:‘f'ﬂ":;,"f,::’:'_,fi“;";i"" pecomes closer 10 the correct b at the next teration)
3. a correlation kerne? %, which computes the Pearson skl '
correlation coefficient, which is a dot-product between the x  enai
normalized activity level vectors corresponding to each target 7 _ o' **

(over the users for which activity is measured on both
targets),

4. a quadratic kernel”"%, which is %% 7% (it has the
necessary property of always being positive semi-definite).

So far, we have not mentioned a way of combining the
kernels. If we were to deal with only target features (or only
with the compound features), combining the kernels could
be done by simple addition, since the sum of positive semi-
definite matrices is also positive semi-definite:

(6)

We can do exactly the same for the kernel for the compound
features:

=K+ HR+ O+ M

g7 — g7 4 g C0 1 prau
K=K o+ T+ T+ AT

()

If we are interested in combining”>- and 97, we could
use the tensor product to ge((t, c), (t', c')). However, we

extension to the kernel perceptron algorithhds in ref 14,
JRank projects each instance from our data set onto the real
line. Each ranking is then associated with a distinct sub-
interval of the reals. During learning these sub-intervals are
updated: if and when the current set of parameters predicts
an incorrect sub-interval, the parameters are updated such
that the new predicted rank is closer to the sub-interval
(and vice-versa, by modifying the boundaries of the sub-
intervals).

A is the activity level observed for pait,(c). In the
formulation it is also understood that we have access to the
set of all the data triplets,(c, Aq,). The sparse parameter
matrix o has nonzero entries; ¢ only for the observed pair
(t,c). It can be used for prediction via eq 5. A set of
thresholds/bing; (one per ordinal value) is also learned. The
algorithm runs through the data sethf stages/iterations
and updates,; and updates the thresholds if it predicts an
incorrect activity level. The algorithm assumes that the ranks

do not (and cannot, for any practical purpose, because ofare ordered fronh= 1 tok, but it can be easily modified to

the infinite dimension vectors) compute this product in the
spaces defined by the respecti¥evalues. This is because
it can be computed simply as
K((t, c), (t', ) = AL, t')%,.(c, ) (8)

which is a handy shortcut that allows for great savings in
the runtime of the algorithm.

Given this kernel and the definition of tiefunction that
is to be learned (from eq 5), we can now define the kernel
perceptron algorithm that will find both an optimal set of
coefficientsay, (O (t, €) €V x ) anda matching set of
adaptive threshold8 (used for binningF).

accommodate other types of ranks.

The updates ofo follow the prediction error (the
difference between the predicted rank and the actual rank,
also called thaanking los3, i.e., they follow the gradient,
while the threshold®; are updated so that the value of the
F function becomes closer to the correct bin at the next
iteration.

The algorithm has two hyper-parameters:

1. The width of the Gaussian kerrelldeally, there should
be one for each (target and compound) kernel.

2. The number of iterationkl.

It is worth noting that the algorithm functions correctly
and as expected whén= 2 (i.e., it learns to perform binary
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Figure 2. Number of compounds available for each target, ABCDEFGHIJKLMNOPQRSTUVWX
classified as actives or inactives. Figure 3. Number of compounds shared by each pair, in

logarithmic scale.
classification). The algorithm reduces to simple single-task
learning if the data set has only one targetbiecomes a
vectory—which is quite handy because it allows us to =
compare directly single-task learning with multi-task learn- ~
ing. ©
2.3. Data Sets and DescriptorsAll the ligands used in o
this study were made in AstraZeneca R&D Montreal. They
all satisfy the Lipinskirule of five. Figure 2 shows the
number of compounds for which the screening data was ~
available for each target. We detailed the active and inactive”
compounds. Here, active compounds corresponds to any
value of inhibition higher than 0. i

We then computed descriptors with MOE (version
2004.03)'8 The set of 469 descriptors range from atom ©
frequencie¥?° and topological indic€$2* to 3D surface <
area descriptors. We also computed MACERandic?® and AlBicloiE Fis My Kt MiN OXF QiR 5T Ul iViwX
EStat&’ descriptors that are available in the MOE package. Figure 4. Pairwise correlation of biological activity.

The numerical values were normalized.

Several receptor-binding fingerprints have been published. 3. RESULTS
The binding pocket fingerprints we used in this work were | thjs section, we present suitable performance measures
based on our observations and some assumptions. The firsiy, the algorithms that we implemented as well as results
assumption is that all the targets in our study share a similarinat can be used for verifying our hypotheses.
binding position. The second assumption is that the amino 31 pirect Activity Correlation. Before computing the
acids of the targets in binding sites have three native rg|ationships between different biological targets, we trans-
interactions between their side chains: ionic, polar, and form the biological activity in a bi-class target using a 20%
hydrophobic. When a ligand interacts in the binding site, it jnnipition cutoff. We can then compute the pairwise linear
will break some of the native interactions and build up new, cqrrelation of activity between each target for shared
ligand involved (mediate) interactions. Based on the positions chemical compounds in the data set. The linear correlation
(at the binding site), the type of the interactions, and the || get higher when two targets have the same active and
variations amount the targets in this study, 14 bins were jnactive compounds.
identified and used. Each bin represents a type of the Figure 3 shows the number of compounds for which we
interaction at the given position of the binding pocket. nhaye pairwise screening information. As can be seen, many
Adding, reducing, or changing the targets will alternate the pajrs' shared number of compounds are small. This fact has
binding pocket fingerprints. many implications in the results shown afterward. It should

Two preconditions should be satisfied for this type of be noted that the choices of compounds for the screening
studies. First, the ligands have not been designed to improveintroduce some unnecessary biases in a multi-target scheme.
their selectivity, and/or second, the recognition region of the  Figure 4 shows the actual pairwise linear correlation of
target is away from the binding region. To accommodate biological activity. From this, we picked seven targets in the
our study, we did not intend to further detail the differences G1* family, for which cross-correlations were the strongest.
between the targets, which would have been possible with These seven targets (A, D, F, H, I, S, and U) will constitute
other protein fingerprint® As a final step, we selected the the main focus of interest for the undersampling experiments.
most varying receptor descriptors to match the small number We also computed pairdetest directly on the percentage
of targets can studied. of inhibition of paired compounds. This is a more robust
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Table 1. Pairedt-Test of Biological Activity Table 2. Multi-Target NNet Learning without Target Descriptbrs
pair of targets score target score 24 targets 12 targets 7 targets 3 targets
D—F 0.954 PLS 181 172 190 189
F-0O 0.899 global 179 171 195 188
Q—X 0.893 A 108 138
1—J 0.845 B 117 120
K—L 0.814 D 121 136 138 165
A—W 0.791 F 112 150 134 176
B—X 0.718 | 173 154 173
L-0O 0.526 J 125 133 172
A-0O 0.509 K 91 110
L 125 146
. . .. O 129 125 141 153
measure of relatedness between biological activity. Table 1 g 127 125 153
details the best results. Based on the score, we constructed W 110 122
three ensemble of targets for future experiments: D, F, O; X 123 136 141

D,F1,J,0,Q,X;andA,B,D,F, I, J, K, L, O, Q,W, X
3.2. Undersampling SchemeTo recreate an environment
where we lack sufficient number of examples to learn a
predictive model, we artificially deplete a data set, focusing
on a target, as explained in section 2. Following algorithm

aLift over 30% of data.

Table 3. Multi-Target NNet Learning with Target Descriptérs

target score 24 targets 12 targets 7 targets 3 targets

2, we focused on the seven most correlated target in the G1 ~ PLS 180 173 190 189
global 189 175 195 193
Algorithm 2 A sample scheme of hypothesis testing A 165 153
Hf s the total r,.].n-_h;-: oF tasks) i : = ] B 128 126
is & real number hetween 0 and 1 (the “undersampling feaction” )
4 o e mbir ot o) ‘ ! D 159 131 135 165
fwt=lnTdo o F 173 152 141 191
for R =0 to 1 (by increments / o
for k=1 to K do i | 170 173 175
[.f(‘r.lu.rl’mln'?.l >i.ll|ld'l.\'i(ll‘ the dataset into [\\'ll.|\?“'|h {the parts in bold only apply to the multi-target case):} J 145 133 178
Do s £ R e WD et < 122 112
{Perform trai  validation {model selection) on Dest} L 168 152
e e e o 132 128 140 152
Ervor(T,R k) = Test{LearnedModel DTest) Q 127 129 153
ond w 112 131
end for X 137 129 143

family. Algorithm 2 describes a simple method for testing  2Lift over 30% of data.
the efficiency of a certain multi-task learning algorithm. By
artificially depleting the data set used for training and petter than random we can order the compounds from active
validation of examples from a certain task and by varying to inactive. We do this by testing a model on an independent
the level of depletion, we can obtain a relatively complete test set and ordering (in decreasing order) the molecules by
picture of the performance of such an algorithm given the scores that we obtain for each of them. We select a subset
different real-life scenarios. Such a scheme also allows for of this ordered list (from the highest ranking molecule
direct comparisons between multi-task learning and single- downward) and compute ratio of actives to the total number
task learning. of compounds in this subset. The higher this ratio, the better
3.3. Hyper-Parameter SelectionTo assess the generali- s our algorithm at predicting which compounds are active.
zation performance of the algorithms presented, we need to | et a/n be the average fraction of actives in our database,
select a combination of hyper-parameters that gives anith a the total number of actives amcthe total number of
optimal performance on a validation set (which is indepen- compounds. In the selected subsets the number of actives
dent from the training set). Given this combination of hyper- andn; is the number of compounds in that subset. Then we
parameters, we can get an unbiased estimate of the genercompute the lift by
alization ability of the algorithms by testing the models on
a testing set, that is independent from both the training and . adng
validation sets. lift =— /o ©)
In the case of the neural network, such model selection
procedures have been performed for parameters such as thin effect, it tells us how much better than chance our
number of hidden units, the weight decay, the learning rate, algorithm performs. The lift that we compute is a single point
etc. Early stopping on the number of epochs (by computing in an enrichment curve that corresponds roughly to an ROC
the validation error at each step and stopping when it startscurve?® The enrichment curve tracks the LIFT values across
to increase) has also been performed. different sizes of the subsets and provides a comprehensive
In the case of JRank, the width of the Gaussian kernels picture of the generalization capabilities of a learning
(the Gaussian kernels for compounds and the one for thealgorithm; it can also be transformed straightforwardly into
targets used the same) was computed by the above an ROC curveé?® Here, the subset is 30% of the database,
validation procedure, whereas early stopping was used forand we multiply the lift values by 100 to improve readability.
finding an optimalN;. 3.5. Multi-Task Neural Network. In this section, we
3.4. Performance MeasuresWe use the lift to assess present the results obtained with the multi-task neural
the performance of the models. The lift measures how much network.
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Figure 5. Effects of undersampling on NNet's performance. Measured on the G1A and G1D targets in three scenarios: multi-target
learning with target descriptors, multi-target learning without target descriptors, and single-target learning.
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Figure 6. Effects of undersampling on NNet's performance. Measured on the G1F and G1H targets in three scenarios: multi-target learning
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Figure 7. Effects of undersampling on NNet's performance. Measured on the G1I and G1S targets in three scenarios: multi-target learning
with target descriptors, multi-target learning without target descriptors, and single-target learning.

3.5.1. Learning without Target Descriptors. Table 2 measurement. We divide the entire data set into two sets:
shows specific target performance of multi-target learning one that will be used for training and validation and another
on either all the 24 G1* targets or the three ensemble of for testing. We select an optimal set of hyper-parameters by
correlated targets, using no target descriptors. In this case, gerforming (a usually 10-fold) cross-validation on the first
double cross-validation scheme was used for performanceset and an estimate of the generalization error is computed
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o individual target performance, it deteriorates going from 3
to 24 targets. Without target descriptors, the model cannot
find a shared representation and solve conflicting examples.
It is also harder to model the remaining 12 targets not in the
subgroups, because they are farther from any other targets
1 (see Table 1).
3.5.2. Learning with Target Descriptors.Table 3 shows
1 specific target performance of multi-target learning with
biological target descriptors on the 24 targets or 3 subgroups
of targets (the same cross-validation scheme as in Section
3.5.1 is used).
By comparing Tables 2 and 3, we notice that the global
lift rises substantially when using target descriptors. The
- o et neural network learns a shared representation from the group
B of tasks that helps the undersampled task.
{ndersamping fracton Table 3 also shows a well-shaped performance as we add
e o 1 St -s St g4 (15t There are o factors that aflect he perfomance
with target descriptors, m%lti-target learning without targgt descrip-gln this case. F_'rSt’ t_he individual chou_:es_of target_s, when
tors, and single-target learning. small, has a direct impact on generalization. For instance,
the choice of three other targets would yield a very different
on the second set using these optimal hyper-parameters. Thisndividual performance. Second, as we add more targets, the
procedure is repeated several times to provide variances ofshared representation theory picks up. As such, a majority
the generalization error. of individual targets get better prediction as we add more to
The PLS! and global lift are computed by regrouping all the 12 targets. Having 8 out of 12 targets showing this
the actives together in a single active class. When checkingbehavior, despite the crude target descriptors we use, is a

@
=)

L = & = Single—target

G1A

G1D

2401 g

2201

E 200+ q 1
=
180 1
160} & 1
ol ] 1
120+ il
1201 i Muiiti—Target w. Descriptors | == Multi-Target w. Descriptors
oo o Multi-Target wio Descriptof o0 Multi-Target wio Descriptof
; ; ; : - @-I Slngle-tlargeﬂ ; ; ; ; = @-I Smgle—ila!get
s o1 02 03 0.4 0.5 0.6 07 0.8 08 1 1000 01 0z 0.3 0.4 05 06 07 08 09 1
Undersampling fraction Undersampling fraction
Figure 9. Effects of undersampling on JRank’s performance. Measured on the G1A and G1D targets in three scenarios: multi-target
learning with target descriptors, multi-target learning without target descriptors, and single-target learning.
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Figure 11. Effects of undersampling on JRank’s performance. Measured on the G1l and G1S targets in three scenarios: multi-target

learning with target descriptors, multi-target learning without target descriptors, and single-target learning.

Table 4. Comparison of Multi-Target NNet Learning with Target
Descriptors and JRahk

i target score multi-target NNet JRank
160} A 183 196
D 159 179
1501 F 173 200
H 200 201
140 | 170 154
n S 264 265
130 U 79 137

120+

aLift over 30% of data.

10

coefficients between either targets or compounds are not

100 i Multi-Target w. D

ic) g:gi;‘,;gr;[wm.ns;:m. sufficient to capture any similarity measure between them).
R TR N L T T Figures 9-12 contain the results obtained with this
Undersamping fraction algorithm. This time it seems that in most of the cases multi-

Figure 12. Effects of undersampling on JRank’s performance. target learning with target descriptors is at least as good as

Measured on the G1U target in three scenarios: multi-target learning .; ~ ; . ; ; )
with target descriptors, multi-target learning without target descrip- Smgle target Ieam_lng or multi t"’.‘rget 'eaf”'”g without de
tors, and single-target learning. scriptors and that, in one case (Figure 9), it seems to perform

better than either of them.

remarkable observation. This result is in line with collabora- By comparing Figures 58 with Figures 9-12 and by
tive filtering expectations. It has supported our research on analyzing Table 4 (which contains lift values at the 0.8
multi-target learning. undersampling fraction for e_ach_ algorithm, corresponding
3.5.3. Undersampled Learning with Target Descriptors, ~ '0ughly to a 5-fold cross-validation result), we clearly see
Given the positive results with target descriptors, we tried that JRank scores much higher thgn the neural netwolrk on
to measure the performance of the network with the the smaller frgctlon of _undersampl_lng. Clearly, JRa_nk IS to
undersampling method. Figures-8 show the details of be preferred in a m_ultl—target sett_lng. We also_notlce that
undersampling the seven most correlated targets with thedX@nk performs quite well even in a simple single-target
neural network. We test our algorithm with and without target scenario and therefore can be used in a stand-alone fashion.
descriptors and compare with single target learning. We see
that the lift rises quickly when doing single target learning 4. DISCUSSION
and that multi-target learning without target descriptors lags  Building a virtual screening model for a new target is a
far behind. Depending on the target, multi-target learning difficult task. We developed a special kind of neural network
with target descriptors falls in between. For G1I, we even that used a collaborative filtering approach to address the
see a slight range of undersampling where multi-target problem. We were disappointed by the poor results. We
learning beats single target learning. nevertheless developed the current target descriptors, which
3.6. JRank.Encouraged by the results obtained with the need a minimal knowledge of the 3D structure of the target.
multi-target neural network, we performed the same type of These target descriptors helped to improve predictive per-
experiments with JRank. We found that using a combination formance and suggested that adding new targets helped the
of identity and Gaussian kernels produced the best results.learning.
The correlation kernel did not seem to capture too well the  On the other hand, the receptor descriptors that we used
similarities between pairs of targets or pairs of compounds throughout our experiments are in a preliminary form and
(a possible reason is that the simple linear correlation we did not verify or optimize them extensively. Such
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