
Why Does Unsupervised Pre-training Help Deep Learning?

Dumitru Erhan Aaron Courville Yoshua Bengio Pascal Vincent
DIRO, Université de Montréal

2920 chemin de la Tour
Montréal, Québec, H3T 1J8, Canada
first.last@umontreal.ca

Abstract

Much recent research has been devoted to
learning algorithms for deep architectures such
as Deep Belief Networks and stacks of auto-
encoder variants with impressive results being
obtained in several areas, mostly on vision and
language datasets. The best results obtained on
supervised learning tasks often involve an unsu-
pervised learning component, usually in an unsu-
pervised pre-training phase. The main question
investigated here is the following: why does un-
supervised pre-training work so well? Through
extensive experimentation, we explore several
possible explanations discussed in the literature
including its action as a regularizer (Erhan et al.,
2009b) and as an aid to optimization (Bengio
et al., 2007). Our results build on the work of
Erhan et al. (2009b), showing that unsupervised
pre-training appears to play predominantly a reg-
ularization role in subsequent supervised train-
ing. However our results in an online setting,
with a virtually unlimited data stream, point to
a somewhat more nuanced interpretation of the
roles of optimization and regularization in the un-
supervised pre-training effect.

1 Introduction

Deep learning methods aim at learning feature hierarchies
with features from higher levels of the hierarchy formed
by the composition of lower level features. Theoretical re-
sults (Yao, 1985; Håstad, 1986; Bengio et al., 2006), re-
viewed and discussed by Bengio and LeCun (2007), sug-
gest that in order to learn the kind of complicated functions

Appearing in Proceedings of the 13th International Conference
on Artificial Intelligence and Statistics (AISTATS) 2010, Chia La-
guna Resort, Sardinia, Italy. Volume 9 of JMLR: W&CP 9. Copy-
right 2010 by the authors.

that can represent high-level abstractions (e.g. in vision,
language, and other AI-level tasks), one may need deep ar-
chitectures. Recent theoretical and empirical work in sta-
tistical machine learning has suggested developing learn-
ing algorithms for these deep architectures, i.e., function
classes obtained by composing multiple non-linear trans-
formations. Bengio (2009) gives a comprehensive review.

Searching the parameter space of deep architectures is a
difficult task because the training criterion is non-convex
and involves many local minima. This was clearly demon-
strated in recent empirical work (Erhan et al., 2009b) show-
ing consistently that with hundreds of different random
initializations, gradient descent converged each time to a
different apparent local minimum, with solutions obtained
from random initialization and purely supervised training
consistently getting worse for architectures with more than
2 or 3 levels. This points to why, until recently, deep archi-
tectures have received little attention in the machine learn-
ing literature.

The breakthrough for deep architectures came in 2006 with
the algorithms for training Deep Belief Networks (Hinton
et al., 2006) and stacked auto-encoders (Ranzato et al.,
2007; Bengio et al., 2007), which are all based on a similar
approach: greedy layer-wise unsupervised pre-training fol-
lowed by supervised fine-tuning. Each layer is pre-trained
with an unsupervised learning algorithm, learning a non-
linear transformation of its input (the output of the previous
layer) that captures the main variations in its input. This un-
supervised pre-training only sets the stage for a final train-
ing phase where the deep architecture is fine-tuned with
respect to a supervised training criterion with a gradient-
based optimization.

The objective of this paper is not to demonstrate a new
learning algorithm for deep architectures but rather to shed
some light on the existing algorithms through extensive
simulations. We are interested in investigating why pre-
training works and why pre-trained networks work so much
better than networks trained in a traditional way. There
are several reasonable hypotheses, several of which are ex-
plored in this paper. A first explanation, suggested by Er-



Why Does Unsupervised Pre-training Help Deep Learning?

han et al. (2009b), is that of pre-training as a conditioning
mechanism for the parameters of the network. An alterna-
tive, suggested by Bengio et al. (2007) is that pre-training
is useful for initializing the network in a region of the pa-
rameter space where optimization is somehow easier (and
where a better local optimum of the training criterion is
found).

The results presented in this paper indicate that pre-training
is a kind of regularization mechanism, by minimizing vari-
ance and introducing a bias towards configurations of the
parameter space that are useful for unsupervised learn-
ing. Such a conclusion is also supported by the results
obtained by Erhan et al. (2009b). Collectively, these find-
ings place the recent advances in training deep architectures
well within the realm of semi-supervised learning meth-
ods. Our simulations show, however, that pre-trained net-
works are unique among semi-supervised methods in that
the unsupervised component is used purely as an initializa-
tion and that its beneficial effects do not appear to diminish
as we perform supervised training.

2 Experimental Results in the Literature

We briefly review some of the more relevant experimental
results from the literature.

Better generalization. When choosing the number of
units per layer, the learning rate and the number of training
iterations to optimize classification error on the validation
set, unsupervised pre-training gives substantially lower test
classification error than no pre-training, for the same depth
or for smaller depth (comparing 1,2,3,4 and 5 hidden lay-
ers) on various vision datasets (Ranzato et al., 2007; Ben-
gio et al., 2007; Larochelle et al., 2009; Larochelle et al.,
2007; Erhan et al., 2009b) no larger than the MNIST digit
dataset (experiments reported from 10,000 to 50,000 train-
ing examples). See Erhan et al. (2009b) for the most com-
prehensive of experiments.

Aid to optimization. In these experiments, the training
error of the trained classifiers is low (nearly 0 on MNIST)
in all cases, with or without pre-training. Such a result
would make it difficult to distinguish between the optimiza-
tion and regularization effects of pre-training. Bengio et al.
(2007) hypothesized that higher layers in the network were
overfitting the training error, thus to make it clearer whether
some optimization effect (of the lower layers) was going
on, they constrained the top layer to be small (20 units in-
stead of 500 and 1000). In that experiment, they show that
the final training errors are higher without pre-training.

Distinct local minima. With 400 different random ini-
tializations, with or without pre-training, each trajectory
ends up in a different apparent local minimum correspond-
ing not only to different parameters but to a different func-

tion (Erhan et al., 2009b). It is difficult to guarantee that
these are indeed local minima but all tests performed (vi-
sual inspection of trajectories in function space, estimation
of second derivatives in the directions of all the estimated
eigenvectors of the Jacobian) are consistent with that in-
terpretation. The regions in function spaced reached with-
out pre-training and with pre-training seem completely dis-
joint (i.e. no model without pre-training ever gets close to
a model with pre-training).

Lower variance. In the same set of experiments, the vari-
ance of final test error with respect to the initialization ran-
dom seed is larger without pre-training, and this effect is
magnified for deeper architectures (Erhan et al., 2009b).
This supports a regularization explanation, but does not ex-
clude an optimization hypothesis either.

Capacity control. Finally, when all the layers are con-
strained to a smaller size, the pre-training advantage disap-
pears, and for very small sizes generalization is worse with
pre-training (Erhan et al., 2009b). Such a result is highly
compatible with a regularization effect and seems incom-
patible with a pure optimization effect.

3 Pre-training as a Regularizer

The results presented so far point to the following:

1. The supervised training criterion for a deep neural net-
work is fraught with local minima, even more so than
in an ordinary single-layer network.

2. Random initialization of a deep architecture falls with
very high probability in the basin of attraction of a
poor local minimum.

3. Unsupervised pre-training initializes a deep architec-
ture in a basin of attraction of gradient descent corre-
sponding to better generalization performance.

We are interested in finding an explanatory hypothesis that
agrees with the above statements, is consistent with experi-
mental results, provides us insight into pre-training as well
as its effects and demystifies several aspects of deep archi-
tectures that are still unclear.

We noted already that Bengio et al. (2007) suggests that un-
supervised pre-training is useful because it helps to better
optimize the training criterion. As we will discuss below,
results of Erhan et al. (2009b) seem to contradict it, point-
ing instead to the the idea that unsupervised pre-training
helps because it acts like a regularizer.

A mathematical formalization of the regularization hypoth-
esis is proposed by Erhan et al. (2009b): unsupervised
pre-training is equivalent to adding an infinite penalty on



Erhan, Courville, Bengio, Vincent

solutions that are outside of a particular region of parame-
ter space. This regularizer corresponds to a data-dependent
prior on parameters θ obtained through unsupervised learn-
ing.

regularizer = − logP (θ). (1)

For pre-trained models, the prior is

Ppre−training(θ) =
∑
k

1θ∈Rk
πk/vk. (2)

where the set of regions Rk partition a bounded region of
parameter space and each region Rk of volume vk corre-
sponds to a basin of attraction of supervised gradient de-
scent. The πk are the prior probabilities that unsupervised
pre-training will fall in region Rk. For the models without
pre-training, there is also a prior with the same form, but
with different probabilities rk:

Pno−pre−training(θ) =
∑
k

1θ∈Rk
rk/vk. (3)

A more intuitive way to think of pre-training as a regular-
izer is by considering a particular initialization point as im-
plicitly imposing constraints on the parameters of the net-
work. These constraints specify which minimum (out of
the large number of possible local minima) of the objective
function is desired.

The optimization effect/hypothesis and the regularization
effect/hypothesis seem at odds but are not necessarily in-
compatible, and one of the objectives of this paper is to
help understand the subtle interplay between their effects.

Under the regularization hypothesis, its effect is very dif-
ferent from ordinary regularization due to smoothing (such
as L2 or L1 regularization), and instead relies on capturing
possibly very complicated structure in the input distribu-
tion P (X), with the assumption that the true target con-
ditional distribution P (Y |X) and P (X) share structure as
functions of X (Bengio, 2009).

As stated in the introduction, the results in this paper sup-
port a regularization explanation. We should stress that
the pre-training effect is unusual among regularizers and
to simply state that pre-training is a regularizer is to under-
mine somewhat the significance of its effectiveness. The
core of it is the restriction imposed by the unsupervised
pre-training phase on the regions of parameter space that
stochastic gradient descent can explore during the super-
vised phase. These regions correspond to parameters that
are good at modeling P (X); as with other semi-supervised
methods, the effectiveness of the pre-training strategy for
initialization will be limited to how much P (X) is helpful
in learning P (Y |X).

4 Data and Setup

Two datasets were used to perform the experiments. The
first is the MNIST digit classification dataset by LeCun
et al. (1998), containing 60,000 training and 10,000 testing
examples of 28x28 handwritten digits. The second is the
InfiniteMNIST dataset by Loosli et al. (2007), which
is an extension of MNIST from which one can obtain a
quasi-infinite number of examples. The samples are ob-
tained by performing random elastic deformations of the
original MNIST digits.

The models used are Deep Belief Networks containing
Bernoulli RBM layers trained with standard Contrastive
Divergence (Hinton et al., 2006), Stacked Denoising Auto-
Encoders (Vincent et al., 2008), and standard feed-forward
multi-layer neural networks, each with 1–3 hidden layers.
Each hidden layer contains the same number of hidden
units, which is a hyperparameter (the optimal number is
usually in the 800-1200 units/layer range). The other hy-
perparameters are the unsupervised and supervised learn-
ing rates and the fraction of stochastically corrupted in-
puts (for the SDAE). For MNIST, the number of super-
vised and unsupervised passes through the data (epochs)
is 50 each. With InfiniteMNIST, we perform 2.5 mil-
lion unsupervised updates followed by 7.5 million super-
vised updates. The standard feed-forward networks are
trained using 10 million supervised updates, with the Neg-
ative Log-Likelihood (NLL) of the correct class as the
training objective. For MNIST, model selection is done
by choosing the hyperparameters that optimize the su-
pervised (classification) error on the validation set. For
InfiniteMNIST, we use the average online error over
the last million examples for hyperparameter selection. In
all cases, purely stochastic gradient updates are applied.
Unsupervised learning is performed in a greedy layer-wise
fashion.

5 Expanding Previous Results

The results of Erhan et al. (2009b) seem to point to a
regularization explanation for the behavior of pre-training.
These experiments were performed on Stacked Denoisin-
ing Auto-Encoders (SDAE): we wanted to verify that sim-
ilar conclusions could be drawn from experiments with
other deep architectures, notably Deep Belief Networks.

We extend the observation made by Erhan et al. (2009b) re-
garding the influence of the size of the hidden layer on the
generalization effect of pre-training. Figure 1 shows that
DBNs behave qualitatively like SDAEs, in the sense that
pre-training architectures with smaller layers hurts perfor-
mance. Such results seems to re-verify the observation that
pre-training acts as an additional regularizer for both DBN
and SDAE models—on top of the regularization provided
by the small size of the hidden layers. With excessive reg-



Why Does Unsupervised Pre-training Help Deep Learning?

Figure 1: Effect of layer size and pre-training on DBNs, 1–3
hidden layer networks trained on MNIST.

ularization, generalization is hurt, and it is hurt more with
unsupervised pre-training presumably because of the extra
regularization effect.

Erhan et al. (2009b) made a claim that supervised gradi-
ents behave differently depending on the depth of the layer.
The authors performed a limited experiment in which they
studied the effect of selectively training layers in a 2-layer
network. In this paper, we expand on those results; in Fig-
ure 2 (top) we explore the link between pre-training and the
depth of the layer in more detail. The setup is as follows:
we pre-train only the bottom k layers and randomly initial-
ize the top n−k layers in the usual way. In this experiment,
n = 3 and we vary k from 0 (which corresponds to a net-
work with no pre-training) to k = n (which corresponds to
the normal pre-trained case).

The results are ambiguous w.r.t. the claim regarding the dif-
ficulty of optimizing the lower layers versus the the higher
ones. We would have expected that the largest incremen-
tal benefit came from pre-training the first layer or first
two layers. It is true for the first two layers, but not the
first. Note that the log-scale (on the right) induces a distor-
tion which makes the improvement of pre-training the third
layer appear larger, where we are already near zero gener-
alization error. As we pre-train more layers, the models
become better at generalization. Note how the final train-
ing error (after the same number of epochs) becomes worse
with pre-training of more layers. This is consistent with a
regularization interpretation of the effect of pre-training.

As mentioned in Section 2, Bengio et al. (2007) performed
an experiment in which they constrained the size of the top
hidden layer. They observed that doing so made it possible
for the pre-trained networks to reach a better local mini-
mum, compared to the networks without pre-training. The
authors concluded that pre-trainining is an aid to optimiza-
tion in deep architectures. However, early stopping on the
validation set was performed, which means that networks
were not allowed to train until a local minimum of the train-

ing criterion. We redo that experiment without early stop-
ping, i.e., allowing the optimization to proceed.

Figure 2: Top: MNIST, a plot of the log(train Negative Log-
Likelihood) (NLL) vs. log(test NLL) at each epoch of training.
We pre-train the first layer, the first two layers and all three lay-
ers using RBMs and randomly initialize the other layers; we also
compare with the network whose layers are all randomly initial-
ized. Bottom: MNIST, a plot of the log(train NLL) vs. log(test
NLL) at each epoch of training. The top layer is constrained to 20
units.

What happens when we restrict the top layer to 20 units
and measure the training error at convergence? Figure 2
shows that the training error is still higher for pre-trained
networks even though the generalization error is lower1.
This result now favors a regularization interpretation. What
may happen is that early stopping prevented the networks
without pre-training from moving too much towards their
local minimum.

6 The Online Setting

An intuitive prediction from the perspective that pre-
training is a regularizer is that its influence should diminish
as the number of training examples increases. To test this
and the claim that the basin of attraction induced by the

1If we compare Figure 2 (top) with 2 (bottom) we can also see
that constraining the top layer of a pre-trained network allows it
to reach a better training error



Erhan, Courville, Bengio, Vincent

early examples is important even in a large-scale setting,
we propose to study the online learning case, where the
number of training examples is very large (potentially in-
finite). In a standard interpretation of a canonical (L1/L2

regularizer), its effect diminishes in such a setting. This
is because the prior defined by it should be in principle be
overcome by the likelihood from the ever-increasing data.

In this paper we discuss the surprising result that the ef-
fect of pre-training is maintained as the size of the dataset
grows. We shall argue that the interplay between the non-
convexity of the training objective and the clever unsuper-
vised initialization technique is the reason for this.

6.1 InfiniteMNIST

The next set of results point in this direction and is the
most surprising finding of this paper. Figure 3 shows the
online classification error (on the next block of examples)
for 6 architectures trained on InfiniteMNIST: 1 and 3-
layer DBNs, 1 and 3-layer SDAE, as well as 1 and 3-layer
networks without pre-training. Note that stochastic gradi-
ent descent in online learning is a stochastic gradient de-
scent optimization of the generalization error, so good on-
line error in principle means that we are optimizing well the
training criterion. We can draw several observations from
these results. First, 3-layer networks without pre-training
are worse at generalization, compared to the 1-layer equiv-
alent. It seems that even in an online setting, with very
large amounts of data, optimizing deep networks is harder
than shallow ones. Second, 3-layer SDAE models seem
to generalize better than 3-layer DBNs. Finally and most
surprisingly, the pre-training advantage does not vanish as
the number of training examples increases, on the contrary.
These results seem to support an optimization effect expla-
nation for pre-training.

Figure 3: Comparison between 1 and 3-layer networks trained on
InfiniteMNIST. 3-layer models have 800-1200 units/layer, 1-
layer models have 2500 units in the hidden layer.

Note that the number of hidden units of each model is a
hyperparameter. So theoretical results, such as the Univer-
sal Approximation Theorem, suggest that 1-layer networks
without pre-training should in principle be able to repre-
sent the input distribution as capacity and data grow, as is
the case in this experiment2. Instead, without pre-training,
it seems that the networks are not able to take advantage of
the additional capacity, which again points towards an opti-
mization explanation. It is clear, however, that the starting
point of the non-convex optimization matters, even for
networks that are seemingly “easier” to optimize (1-layer
ones), which supports our hypothesis and favors a regular-
ization interpretation.

6.2 The Influence of Early Examples

In the case of InfiniteMNIST we operate in an online
stochastic optimization regime, where we try to find a local
minimum of a highly non-convex objective function. It is
then interesting to study to what extent the outcome of this
optimization is influenced by the examples seen at different
points during training, and whether the early examples have
a stronger influence (which would not be the case in the
convex case).

To quantify the variance of the outcome and to compare
these variances for models with and without pre-training,
we proceeded with the following experiment: given a
dataset with 10 million examples, we vary the first million
examples (across 10 different random draws, sampling a
different set of 1 million examples each time) and keep the
other ones fixed. After training the (10) models, we mea-
sure the variance of the output of the networks on a fixed
test set (i.e. we measure the variance in function space).
We then vary the next million examples in the same fash-
ion, and so on, to see how much each of the ten parts of the
training set influenced the final function.

Figure 4 shows the outcome of such an analysis. The sam-
ples at the beginning3 do seem to influence the output of the
networks more than the ones at the end. However, this vari-
ance is lower for the networks that have been pre-trained.
In addition to that, one should note that the variance of the
pre-trained network at 0.25 (i.e. the variance of the output
as a function of the first samples used for supervised train-
ing) is significantly lower than the variance of the super-
vised network. Such results imply that unsupervised pre-
training can be seen as a sort of variance reduction tech-
nique, consistent with a regularization role. Finally, both
networks have higher output variances as a function of the
last examples used for optimization.

2In a limited sense, of course, since we are obviously not able
to explore unbounded layer sizes and datasets.

3Which are unsupervised examples, for the red curve.



Why Does Unsupervised Pre-training Help Deep Learning?

Figure 4: Variance of the output of a trained network with 1 layer.
The variance (y-axis) is computed as a function of the point at
which we vary the training samples (x-axis). Note that the 0.25
mark corresponds to the start of pre-training (for the red curve).

6.3 Evaluating The Training Error

Another experiment that shows the effects of large-scale
online stochastic non-convex optimization is in the setting
of InfiniteMNIST, where we compute the error on the
training set, in the same order that we presented the ex-
amples to the models. Figure 5 we observe several in-
teresting results: first, note that both models are better at
classifying examples that are closest to the last examples
seen. This is a natural effect of stochastic gradient descent.
Note also that examples at the beginning of training are
essentially like test examples for both models. Second,
we observe that the pre-trained model is better across the
board on the training set. This fits well with an optimiza-
tion explanation. Note how this differs from what was seen
with MNIST, where the training error was larger with pre-
training (Erhan et al., 2009b). Finally, note that even the
most recently seen examples, the pre-trained model (which
is regularized, according to our hypothesis) performs bet-
ter than the model without pre-training. On the surface,
one would expect a regularized model to perform worse on
the most recently seen examples because of additional con-
straints (via regularization), compared to the unregularized
model. In reality, because of the non-convexity of the train-
ing criterion, both models (with and without pre-training)
are constrained by the starting point of the supervised op-
timization; and the starting point of the pre-trained model
is the basin of the attraction that is defined by unsupervised
learning, which seems to be provide better generalization
performance.

6.4 Filter visualization

Figure 6 shows the weights (called filters) of the first layer
of the DBN before and after supervised fine-tuning. For
visualizing the 2nd and 3rd layer weights, we used the acti-

Figure 5: Error of 1-layer network with RBM pre-training and
without, on the 10 million examples from InfiniteMNIST,
used for training it. The errors are calculated in the same order
as the examples were presented during training.

vation maximization technique described by Erhan et al.
(2009a)4. Several interesting conclusions can be drawn
from this figure. First, unsupervised learning appears to
make the network get “stuck”, qualitatively speaking, in a
certain region of weight space. Supervised learning, even
with 7.5 million updates, does not change the weights in a
significant way (at least visually). Different layers change
differently: the first layer changes least, while supervised
training has more effect on the 3rd layer.

Figure 6 also shows the filters learned by a standard 3-
layer network on the same data. The filters seem less in-
terpretable, compared to the ones learned by the DBN,
but more importantly they seem qualitatively very different
from the ones learned by the DBN, even after the super-
vised phase. Such an observation is in line with the find-
ings of Erhan et al. (2009b), whose function space visual-
izations of networks with and without pre-training showed
that they explore essentially different regions of the func-
tion space; the filter visualizations reconfirm this in the
qualitative parameter space.

These results support the claim regarding the difficulty of
training deeper layers, but, more crucially, they demon-
strate that the early dynamics of stochastic gradient de-
scent can make training “stuck” in a region of the parameter
space that is essentially not accessible for networks that are
trained in a purely supervised way.

6.5 Selective Pre-training and The Effect of
Canonical Regularizers

In Figure 7 we explore the link between pre-training and
the depth of the layer for InfiniteMNIST. The setup is

4In essence, the method looks for the input pattern the maxi-
mizes the activation of a given unit. This is an optimization prob-
lem which is solved by performing gradient ascent in the space
of the inputs, to find a local minimum of the activation function,
starting from a random initialization point.



Erhan, Courville, Bengio, Vincent

Figure 6: Visualization of a selection of filters learned by a DBN
(left and middle) and by a standard 3-layer network trained on
InfiniteMNIST. Both networks have 1000 units per layer.
The left figures contain a visualization of DBN filters after pre-
training, the middle ones picture the same units after supervised
fine-tuning, while right ones picture units from the purely super-
vised network. From top to bottom: units from the 1st, 2nd and
3rd layers, respectively.

the similar to the one in Figure 2, except this time we show
the online error. The results are comparable to the ones in
Section 2.

Finally, an alternative hypothesis to the regularization ex-
planation would be that classical ways of regularizing could
perhaps achieve the same effect as pre-training. We inves-
tigated the effect of L1 and L2 weight regularization of a
network without pre-training and found that while in some
cases a small penalty could in principle help, the gain is
nowhere near as large as it is with pre-training, and thus
such a hypothesis can be rejected.

7 Discussion

Our findings support the idea that small perturbations in the
trajectory followed by stochastic gradient descent (SGD) in
the parameter space induce greater changes early on. This
is due to the fact that early in training, weight changes tend
to increase their magnitude and to add nonlinearity to the
network. As training continues, the set of regions that are
accessible by SGD is becoming smaller and smaller. This
means that training is “trapped” in the basin of attraction
that is defined by the early perturbations of the parameter
space trajectory, and it is harder for SGD to “escape” from

Figure 7: InfiniteMNIST, the online classification error. We
pre-train the first layer, the first two layers or all three layers us-
ing denoising auto-encoders and leave the rest of the network ran-
domly initialized.

such a basin5.

This implies that even in the presence of a very large (ef-
fectively infinite) amount of supervised data, SGD can suf-
fer from a degree of over-fitting to the training data that
is presented early on. This means that one can see pre-
training as a (clever) way of interacting with the optimiza-
tion process, by defining the starting point of the supervised
training process and “trapping” it in the basin of attraction
corresponding to parameters that are useful for perform-
ing unsupervised learning. As our results show, the effect
of pre-training is indeed persistent even in the large-scale
case.

This hypothesis states that due to the non-convexity of the
supervised training criterion, early examples have a dispro-
portionate influence on the outcome of the training proce-
dure. This has ramifications in many of our results and is
the reason why pre-training is still effective even in a large-
scale setting where it is used only for initialization, where
supervised training does not seem to escape from the basin
of attraction defined by the initialization, as we add more
examples. Thus, in contrast with classical regularizers, the
effect of pre-training does not disappear.

With a small training set, one is usually not particularly
interested in minimizing the training error on it, because
over-fitting is typically an issue and because the training
error is not a good way to separate the performance of two
models. In such a setting, pre-training helps find better
minima in terms of generalization performance. However,
in a large-scale setting, as seen in Figure 5, finding a better
local minimum will matter and better (stronger) optimiza-

5This would behave on the outside like the “critical period”
phenomena observed in neuroscience and psychology (Bornstein,
1987).



Why Does Unsupervised Pre-training Help Deep Learning?

tion techniques should have a significant impact on gener-
alization in such scenarios.

Future work should clarify our finding about the influence
of early examples. If this is corroborated by future results,
it may mean that we need to consider algorithms that re-
duce the effect of early examples, especially in a large-scale
setting. Bengio et al. (2009)’s work on curriculum learn-
ing, whereby an easy-to-hard ordering of training examples
seems to make a difference is an interesting connection to
this work and should be further investigated.

Other work includes the analysis of semi-supervised tech-
niques for training deep architectures where there is only
one phase of training, such as work by Larochelle and Ben-
gio (2008) and Weston et al. (2008). We would also like
to understand how learning a generative model of P (Y,X)
has a regularization effect relative to just learning P (Y |X),
as shown by Ng and Jordan (2002)6. Finally, it would be
helpful to investigate the influence of “pre-training” using
the so-called Fisher kernels (Jaakkola & Haussler, 1999),
and in which sense do the results that we present hold in
that setting as well.

Understanding and improving deep architectures continues
to be a challenge. We believe that in order to devise im-
proved strategies for training deep architectures, one needs
a better understanding of the mechanisms and difficulties
that we face with them. We put forward a hypothesis that
explains the underpinnings on pre-training and this hypoth-
esis is well supported by extensive simulations.

Acknowledgements

This research was supported by funding from NSERC, MI-
TACS, FQRNT, and the Canada Research Chairs. The au-
thors would like to thank the anonymous reviewers for their
helpful comments and suggestions.

References

Bengio, Y. (2009). Learning deep architectures for AI. Founda-
tions and Trends in Machine Learning, 2, 1–127. Also pub-
lished as a book. Now Publishers, 2009.

Bengio, Y., Delalleau, O., & Le Roux, N. (2006). The curse
of highly variable functions for local kernel machines. In
Y. Weiss, B. Schölkopf and J. Platt (Eds.), Nips 18, 107–114.
Cambridge, MA: MIT Press.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007).
Greedy layer-wise training of deep networks. NIPS 19 (pp.
153–160). MIT Press.

Bengio, Y., & LeCun, Y. (2007). Scaling learning algorithms to-
wards AI. In L. Bottou, O. Chapelle, D. DeCoste and J. Weston
(Eds.), Large scale kernel machines. MIT Press.

6Note that in that case, the difference in performance dimin-
ishes as the training set size increases.

Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009).
Curriculum learning. ICML’09. ACM.

Bornstein, M. H. (1987). Sensitive periods in development :
interdisciplinary perspectives / edited by marc h. bornstein.
Lawrence Erlbaum Associates, Hillsdale, N.J. :.

Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009a). Vi-
sualizing higher-layer features of a deep network (Technical
Report 1341). Université de Montréal.

Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., & Vincent,
P. (2009b). The difficulty of training deep architectures and
the effect of unsupervised pre-training. Proceedings of the
Twelfth International Conference on Artificial Intelligence and
Statistics (AISTATS 2009) (pp. 153–160). Clearwater (Florida),
USA.

Håstad, J. (1986). Almost optimal lower bounds for small depth
circuits. Proceedings of the 18th annual ACM Symposium on
Theory of Computing (pp. 6–20). Berkeley, California: ACM
Press.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning
algorithm for deep belief nets. Neural Computation, 18, 1527–
1554.

Jaakkola, T. S., & Haussler, D. (1999). Exploiting generative
models in discriminative classifiers. NIPS 11 (pp. 487–493).
MIT Press, Cambridge, MA.

Larochelle, H., & Bengio, Y. (2008). Classification using dis-
criminative restricted Boltzmann machines (pp. 536–543. ).
Helsinki, Finland.

Larochelle, H., Bengio, Y., Louradour, J., & Lamblin, P. (2009).
Exploring strategies for training deep neural networks. The
Journal of Machine Learning Research, 10, 1–40.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio,
Y. (2007). An empirical evaluation of deep architectures on
problems with many factors of variation (pp. 473–480. ). Cor-
vallis, OR.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings
of the IEEE, 86, 2278–2324.

Loosli, G., Canu, S., & Bottou, L. (2007). Training invariant sup-
port vector machines using selective sampling. In L. Bottou,
O. Chapelle, D. DeCoste and J. Weston (Eds.), Large scale
kernel machines, 301–320. Cambridge, MA.: MIT Press.

Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. genera-
tive classifiers: A comparison of logistic regression and naive
bayes. NIPS 14 (pp. 841–848).

Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2007). Ef-
ficient learning of sparse representations with an energy-based
model. NIPS 19 (pp. 1137–1144). MIT Press.

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008).
Extracting and composing robust features with denoising au-
toencoders. ICML 2008.

Weston, J., Ratle, F., & Collobert, R. (2008). Deep learning
via semi-supervised embedding. Proc. ICML 2008 (pp. 1168–
1175). New York, NY, USA.

Yao, A. (1985). Separating the polynomial-time hierarchy by or-
acles. Proceedings of the 26th Annual IEEE Symposium on
Foundations of Computer Science (pp. 1–10).


